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We study the convergence behavior of the diagonal sequence of the Pade table
associated with a function with branch points. Given a set of even number, 2/,
of the branch points, a unique set S is constructed which consists of a number of
analytic Jordan arcs ending at the branch points. We assume that these arcs are
nonintersecting. Let a(t) be a complex, never vanishing function defined on S,
satisfying a Lipschitz type smoothness condition there, and let X(t) be the
monic polynomial of degree 2/ with zeros at the branch points. We construct
orthogonal polynomials with respect to the weight function X~:11:2V) a(t) and
study their asymptotic behavior. The orthogonal polynomials are defined without
complex conjugation and the domain of integration is S. Some properties of these
polynomials yield convergence in capacity of the diagonal sequence of Pade
approximants to f(t) fs dt'X:;:(1/2)(t')a(t')(t' - f)-I in any closed, bounded
domain of the complex plain cut along S.

1. ]NTRODUCTION

The aim of this paper is to gain some understanding of the convergence
behavior of diagonal Pade approximants (approximants of the continued
fraction) to a function with branch points. We treat functions which can be
written in the form

IU) == f dt' X~(1/2)(t') a(t')(t' - t)-l.
·s

(1.1)

The set S consists of a number of analytic Jordan arcs ending at the given
distinct finite points di , i = 1,... ,21, in the complex plane. For a given
choice of {dil, S is given uniquely by a prescription described in Section 2.
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2 NUTTALL AND SINGH

The weight function a, defined on S, is constrained to obey smoothness
Condition 6.3. This allows, for instance, a to be an entire function. The
polynomial X is

'.!)

X(t)= n (t - di)
i I

and x- (1/2) denotes the value of X II2) on a particular side of S·.
The functionf(t) has an expansion about the point at ex

( 1,2)

l(l) I r i, r dl X (I21(t') aU') (It,
I, I -,\

( 1.3)

From the coetTicients in this expansion may be found the [11/I1J Frobcnius
Pade approximant to/

DEFINITION J.1. The [11/I1J Frobenius Pade approximant to lis

[11 /11] V,,(r-I)/W,Jr 1) (14)

where V,,(t), W,,(r) are polynomials in r of degree no higher than II. which
satisfy

l(t) W,,(t· 1) ( I.S)

It is known [IJ that the Frobenius PadIS approximant always exists and is
unique, although V" . W" may not be unique.

Our main result is Theorem 7.5 where it is shown that [11/IIJ converges in
capacity to f in any closed bounded region of the complex plane not inter­
secting S. The proof of this theorem is based on the connection between the
Pade approximant [11/11] and the orthogonal polynomial p,,(t). The proof given
does not apply to the special case in which S does not consist of Inoninter­
secting analytic arcs.

DEFINITION 1.2. An orthogonal polynomial of order II, fJ,,(t). is a poly­
nomial of degree in satisfying the relations

( dt X n /21(t) a(t) IIp,,(l) O.
·'S

k (I..." II I. 11.6)

There is always at least one such polynomial not identically zero.
We shall show below that we may choose W,,(r- 1 ) r'''p,,(t), and that the

convergence of the sequence [n/n] follows from a knowledge of the behavior
of p,,(t) as n -+X.

The determination of the asymptotic behavior of p,Jr) forms the bulk or the
paper. We use a generalization of the method described by Szegi"l [2J. We
construct an approximation to IT which is the inverse of a polynomial, and,
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for large enough n, are able to find the orthogonal polynomials exactly for
the approximate weight function. The required Pn is shown to be the solution
of an integral equation which can be solved by iteration for large n.

To find orthogonal polynomials for the approximate weight function, we
must solve the Jacobi inversion problem for the Riemann surface ~ cor­
responding to y2 = X(t), which may be thought of as two sheets joined at S.
This leads, for each n, to a set of points exi , i = I, ... , 1- I, on fJil. At least
for an infinite subsequence of integers n, with consecutive members separated
by no more than I, the polynomial Pn(t) has, for large n, zeros near to those
eXi that lie on the first sheet of f!Jl. The other zeros of Pn are near S.

The restriction of the path of integration in (1.1) that joins the points {dJ
might appear to be rather severe. However, in the case of weight functions (J

with some region of analyticity, this is not the case. For instance, let us
consider the case of (J entire. Then it is clear thatpn{t) and [n/n] are unchanged
if S is distorted in any way that keeps its ends fixed and does not let S reach
c:fJ. From the Pade approximants or the orthogonal polynomials we cannot
tell which choice of integration path was used in their definition, but, at least
for the subsequence, the particular set S is chosen as that approached by all
but at most (l - 1) of the poles of [n/n] (the zeros of Pn(t)) as n --+ oc.

This sort of behavior is to be found in the work of Dumas [3], who found
explicitly, in terms of elliptic functions, the diagonal Pade approximants to a
function involving the square root of a quartic polynomial. The materia! in
Section 5 generalizes this and could be used to obtain his results in more
transparent fashion. The same goes for the work of Achyeser [4], which is
related to a special case of Dumas' results.

For I =, I the results of this paper have been obtained previously [5], and,
for some functions (J satisfying condition (6.3), they are implied by the work
of Baxter [6]. For I > 1, the results have been derived earlier for a particular
choice of (J and a restricted choice of {di } [7].

In Section 2 we introduce the set S and give some of its properties. In some
special cases it has been shown [7] that S may be characterized as the unique
set of minimum capacity amongst all sets whose connected components each
contain an even number of the points d; . We expect that this holds in general,
but, since this property is not needed for the present work, we have not
investigated the question further.

Section 3 gives some properties of orthogonal polynomials (according to
our definition) which mirror the properties of the Pade table. These results
apply to more general weight functions than those considered here.

The solution of the Jacobi inversion problem and some of its properties
needed in the sequel form Section 4. These results allow us to put an upper
bound to the length of the intercept of a block of the Pade table with the
principal diagonal.

In Section 5, we construct the orthogonal polynomials of sufficiently high
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order. "01' the case when a(t) is the inverse of a polynomial, in terlll'> "I' ~,

function meromorphic on#. including amongst its zeros the poinh thai

came from the solution of the Jacobi problem. An explicit form of Ihh

function i, given, which is needed in the discussion of convergence.
The derivation of the integral equation for P,! in Section 6 is modeled (111

that ofSzego [2], but the estimates required are more involved. An important

result is Lcmma 6.7 which permits us to relate the asymptotic behavior PI' I'
to the Green's function for 5; with pole at I. The method uses a polynomutl
approximating (J 1(1 ) on S. and the proof of the existence of a ,uitahk

polynomial is given in /\ppendix 2. If we were prepared to strengthen require­

ment (ii) of Condition 6.3 to apply to the whole ofS. this demonstratioll would

be much simpler.
Finally. in Section 7 the convergence proof for Pade approximanh I' 22lVell.

This i:, complicated by the t~lct that we have information on fI,Jt) lor ,I

subsequence of the integers II. but the generalization of the recurrence relation
between orthogonal polynomials is llsed to fill in the gaps.

In this ,ection we define the set S in the complex plane and de,cnbe,ollk
of its prnperties. We begin with the Riemann surface.# ofr as a functioil 011.

where XU). This consists of two copies of the complex plane. We shall

call tht: points atI on these two sheets I j and x " . NearY' 1 \\c' a"ume
XI" . ,

The properties of Abelian (hyperelliptic) ditferentials and inle~;:'ai,

connected with /1/ will be required in the sequel. /\n excellent diSCUSSion J'

given by Siegel [8]. A basis for the differentials 01' the fir,t kind i, till . \\ herc'

1..... ! I.

Siegel ,Iww, that there exists ;: unique ditTerenti;tI of the third kind ilf. \\ I1IC I )

is regular apart from simple poles at X j • Ie with residue, 1 and 1. dnd
which has all its periods pure imaginary. In term, of dE we define 011 ;7' the

multivalued hyperelliptic integral of the third kind dAr) b\

I dl.

Li\1 \1\ :::. I. For allY pathfi'o/il d1 to d, that owid\ Y..

(.:' .:'.>

Re eP(di ) o. I ..... :::1

Proot: We assume i I. for (;h(el j ) iI.'-.,uppthe that YU) i, d pOlylh)·

mial of degree I I. with coeHicienl or r I J unitv. Then} r (1"' ell j, a differT!]·
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tial of the third kind which is regular apart from simple poles at 001 , 002 with
residues 1 and -1. It follows [8] that there exist unique complex constants
~k , k = 1,... , I - 1, such that

1-1

YX- l1 /2j dt - dE = I 13k, dw" .
k~1

Using (2.1) it follows that there exists a unique degree (I - 1) polynomial
Z(t), coefficient of t l - 1 unity, such that

dE = ZX-1(2 dt. (2.3)

Now a period of dE is defined as the integral of dE round any closed curve
on f!l. A path in the complex plane from d1 to a point near dk , a small circle

round d", , and the same path back to d1 is such a curve. The function X-U / 2)

has opposite signs at corresponding points on dId" and d"d1 • If we let the
radius of the small circle approach zero we see that the period corresponding
to this path is

tl.i
2f Z(t) X-u(2)(t) dt

Ul

but we know this is pure imaginary. I

LEMMA 2.2. If Re ¢(t) = 0 for any given path from d1 to a point in the
complex plane, then Re </J(t) = 0 for all paths from d1 to t.

Proof This follows because the periods of dE are pure imaginary. I

DEFINITION 2.3. The set S in the complex plane is

S c= {t : Re </J(t) = O}.

We have seen that it does not matter which path is used in evaluating </J(t) in
this definition. Our arguments have shown that S is uniquely determined by
the points di •

Next we give some properties of S. We suppose

1-1

Z(t) = TI (t - Ci).
i=l

LEMMA 2.4. (i) S is the union of a finite number offinite analytic Jordan
arcs, whose endpoints are chosen from the po.ints di , Ci .

(ii) Each point di is the end of one arc and each point Ci in S of multi­
plicity (q - 1) is the end of2q arcs, except that, if Ci = dj , the number ofarcs
that end at that point is 2q -- 1.
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(iii) The complement Sf ofS is connected.

(iv) Re ep is single-valued in Sr.

Proof (i) If fo is a point where Re ep(to) •..• 0, ep is analytic, and cP'(to)

0, then the equation ep(t) c.c z in a neighborhood of fo may be inverted [9J to

read
fc", F(:)

with F analytic in a corresponding neighborhood. This shows that the locus
Re z ,~O is part of an analytic Jordan arc near to to in the t-plane. The only
other points on S are di and those c; satisfying Re epee,) 0, and these points
are the only points where the arcs can end.

(ii) Suppose, for a particular value of i, that we have Re ¢(c;) O.
Since

dep!dt = ZX· Il~)

we have dep!df Oat f Cr' and thus near c; (assuming c, d i • any))

o.

This shows that the locus Re ep(t) °consists, in the neighborhood u! (
of 2q analytic Jordan arcs ending at c; [9J. 1n a similar way, by expanding J,
in a power series in (t d;)l.". we may prove the rest of the statement.

(iii) Suppose that sr, the complement of S, were not connected. Since
J, ""-- In f as f-~Y:. we see that S' extends to CD in all directions. Thus S"
must contain a bounded domain whose boundary consists of the union of <l

finite number of Jordan arcs on which Re ep., 0. Since this domain cannot
contain a singularity of cP as an interior point, we can define in this domain a
single-valued analytic function ep, whose real part. by Lemma 2.2, i~ 7ero on
the boundary. This is a contradiction, since Re r/> is not constant in the
domain [lOJ.

(iv) Part (ii) shows that each connected component of S must contain
an even number of points £I;. The change in r/> as we go round a closed
contour in sr enclosing one or more components of S is a period of dE and
the result follows. I

The 2q arcs ending at c; may be regarded as making up q analytic arcs
ending elsewhere, and hence the description of S as a number of possibly
intersecting arcs with endpoints {d;} is justified.

The function Re cP(t) is harmonic and single-valued in sr, is zero on Sand
behaves at JJ like 'In: f i const. It is therefore [11] the unique Green\
function with pole at CD for S.

From now on we shall assume that :J! is divided into two sheeh by,\. The
function XJl2 is single-valued in Sr. For later use we arbitrarily assign a dire,,-
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tion to each arc of S. We denote by + that side of S which is on the left as
we move along the arc, and by - the other side.

If F is a function defined on &£, we shall take F(ti ) to mean F evaluated at t
on sheet i. Where not specified, F(t) will mean F(tl). For tl E S, F+(tl) will
mean the limit of F(tl) as t approaches S from the + side. In the case of
X- ll / 21, we shall abbreviate X:;::(1/2l(tl) by X:;::(I/2)(t).

3. ORTHOGONAL POLYNOMIALS AND PADE ApPROXIMANTS

In Section 7 we shall need some general results, assembled below, on
orthogonal polynomials and Pade approximants. The precise form of all the
results is not available elsewhere, but their content is not new [I].
Here, we shall make no use of the special character of S or the smoothness
of a. In this section we shall write afor aX:;::(I/2l.

From any orthogonal polynomial of order n, we can construct the [nln]
Pade approximant to f(t) by the next lemma..

LEMMA 3.1. For any n ::? 0, the [nln] Frobenius Pade approximant to f(t)
may be written as

[nln] = p-:,\t) Is dt' a(t')[Pn(t) - Pn(t')](t' - f)-I.

Proof We show that

Wn(t-l) = t-npn(t),

(3.1)

(3.2)

satisfy (1.5). They are both clearly polynomials in t- I of degree no higher
than n. We have

f(t) W n(t-l) - VnCt-l) = t-n Is dt' aCt') Pn(t')(t' - f)-I

= _t-n- 1 I dt' a(t') Pn(t') f «(It)"' (3.3)
s "'~O

= O(t-2"-1)

from (1.6).
The converse of Lemma 3.1 is

LEMMA 3.2. If the [nln] Frobenius Pade approximant to f(t) can be written
in the form r'(t)lr(t), where r, r' are polynomials ofdegree jA, jA - 1, respectively,
jA :e;; n, then

r dt aCt) ret) t 7• = 0,
's

k = 0'00" n - 1. (3.4)



8 :\UTTALL AND SI\:GH

Proof The uniqueness or the Frobenius Pade approximant [1] shows thal
we must be able to find set), a polynomial in t, of degree •...•. n- f.L such that
the functions appearing in the definition of the Pade approximant may he
written

and from (1.5) we obtain

W'n(r I)

V,,(t I)

s(t I)f "r(t).

s(t I) f "r'(r).

We have for large f

s(l I) f ] r dt 11(1') r(l') I (I' f)

f,' II

1(1 !) I" r df' rJ( r') r(r')( f I i I

·s

1(1 1)I'r(l) (dr'ii(T')l1 t) i

. \'

I( f I){ , ( clr' (i( r')( r(r , ) r(f ))(1 I)
..,'

I, \I

where s'U) is a polynomial in f of degree Il

fl'·1 I fl, f'df'6ft')r(")r'l
• 1

1. Substituting (3.5) gin>

Since ST(t 1) O(f" "). the result follows on equating rowers or !

k 0"", n- 1. I

LEMMA 3.3. Fur ('ach n 0 there c.Yists WI irreducihfe orthogonal polr-
nomial of order n. Tin(r), uniquc up to a constant fcu'for. An.\' orthogonal/)()/r­
nomial PnCt) oforder n mal' he Il'ritten as the product olTin(t) and a polvllomia/
in t.

Proof Suppose that fin . r/l are two independent orthogonal polynomiaL
of order 11. The uniqueness of the Frobenius Pade approximant [I]. with
Lemma 3. J. shows that there are polynomials p'. r' such that
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Let p//V) be that factor of Pn(t) remaining after all common factors of p', Pn
have been removed. Then (3.6) shows that Pn(t) is unique (up to a constant
factor). For any pit) we may write

Pn(t) = Pn(t) set) (3.7)

with s(t) a polynomial.

The fact that Pn(t) is an orthogonal polynomial follows from Lemma 3.2. I

LEMMA 3.4. (i) There exists a sequence of nonnegative integers, Vi,

called basic integers, °~~ Vi < V 2 < Va "', such that Pc. is of exact degree Vi

and Pn =~ P,;, n== Vi' Vi + 1, ... , Vi 1-1 - 1. For no other value of n does

Pn ~~ P"i .
(ii) For integers of the form Vi' Vi ~ 1, and no others, the orthogonal

polynomial is unique up to a constant factor.

Proof (i) Take any n, and suppose that the degree of Pn is fL :'( n. Also
suppose that

k == 0, 1, ... , A. - 1 (3.8)

with ,\ n. We assume that (3.8) does not hold for k = A..
It follows that Pn(t) is an orthogonal polynomial for orders fL, fL + 1, ... , A..

Thus it gives rise to [N/N] Pade approximants for N == fL, ... , A.. All these Pade
approximants will have, from Lemma 3.1, the form j3' /Pn , with jj' the same
for each N. Since N = n is among the values considered, we know that p',
Pn have no common factors. Thus for each N = fL,"" A., the argument of
Lemma 3.3 shows that Pn is the irreducible orthogonal polynomial.

(ii) This is obvious for order Vi' For order n = Vi - 1, let us write
m ~= I'i-l . Then an orthogonal polynomial for order n is Pm(l). Any other
independent orthogonal polynomial of order n has the form Pm(t) set), with
set) a polynomial of exact degree );1. Suppose that (t - a) is a factor of set).
Then the argument of Lemma 3.3 shows that there exists a polynomial ret)
such that the [n/n] Pade approximant may be written r(t)/(Pm(t)(t - a)).
Lemma 3.2 shows that

r dt O'(t) Pm(t)(t- a) the = 0,
·s

k = 1, ... ,11-- 1. (3.9)

k == 1, ... ,11

Since Pm(t) is an orthogonal polynomial of order n, we deduce from (3.9) that

Is elt O'(t) Pm(t) the = 0,

which contradicts the properties of basic integers discussed above. We
conclude that the orthogonal polynomial of order Vi - 1 is essentially unique.
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For integers n other than those of the form Vi' ~'i- I, (3.8) shows that
tp" is an orthogonal polynomial of degree n, where Vi is the largest basic
int~ger <: n. I

We now obtain a generalization of the usual recurrence relation ,ali,ficd by
irreducible orthogonal polynomials.

LEMMA 3.5. Ij'p., V ;\ are consecutire integers/i'om the seqlleJln i', or
the praious lemma, then a po£vnomial Q(t) oj' exact degree ,\ :'. ulld a
constant C may be found such that

13.10)

Proof Consider ~ Qp, Cp~ , where Q. C have the above character.
Then for any Q, C the polynomial t of degree ,\ will satisfy

The conditions

r ill 6(1) tit(l) 0= o.
·s

r dt 6(1) II, f(r) 0,
oS

k 0..... !'

I ..... ;\

constitute /\ l' I linear relations between the coefficients 01' Q and C.
(JI. --- v 2) unknowns. There is therefore always a nontrivial solution,
which is easily seen to be unique. The uniqueness of the orthogonal poly­
nomial of degree /\ proves the result. I

COROLLAR Y 3.6. Ij'II j' ;\ ure basic integers, /lot necessarili co/lle-
cutire, then polynomials Q~, Q,\, a/ld D' ol degree V.7' /1. ,\ /1.

respcctirely, may befoand such that

Q"Pit Q,\p,\
---._-- _._-- _.-

D'
Ulll

D' is not identically ::'('1'0.

Proof Suppose that YJ is the smallest basic integer v. Repealed lise of
(3.10) shows that

(3.12)

where Qill is a polynomial of exact degree i\
degree <JI. YJ 1. Similarly, we have

y), and Q(;!.i is a polynollwd of

13.13)

where QI:11 is a polynomial of degree I' /1 ! 0 Q'll a polynomial of
exact degree jJ fL. and the constant C may be zero.
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Solving (3.12) and (3.13) gives

11

We deduce that D' = Q(3)Q<2) -- Q(l)Q(4) is not identically zero from the
fact that, if it were, we would have

The equation cannot hold, because the degree of the left side is greater than
the degree of the right. I

4. THE JACOBI INVERSION PROBLEM

In this section we discuss the solution of an example of the Jacobi inversion
problem. We shall need this solution and some of its properties when we
construct orthogonal polynomials.

Suppose that S has p connected components and that dl , ... , dp each belong
to a different component. (We assume that only one arc of S ends at dl .) Let
C = (Cl , ... , Cp - l ) be a set of finite arcs joining dl d2 , d2d3 "', dp - l dp , that
do not intersect each other or S (except at their ends). We shall need hyper­
elliptic integrals of the first kind, uia), defined uniquely for a point a on
either sheet of~ by

(4.1)

If a is on the second sheet, the path of integration in (4.1) runs from 002 to a

without crossing S or the arcs of C. If a is on the first sheet, the path of
integration does not cross the arcs C, but crosses S once near the point dl •

We also define 2(/ - 1) arcs in the complex plane, Lj ,j = 1,... ,2(/- 1), so
that L j joins the points dl , dHl and does not intersect S except at its ends. A
set of periods of the integrals of the first kind is given by

(4.2)

where X-(1/2) in dWk is evaluated on the first sheet.
Central to our discussion is the solution of the Jacobi inversion problem of

finding on ~ points ai, i = 1, ... , / - 1, along with integers 7)j, .i = 1,... ,
2(/ - 1), satisfying

1-1 2(1~1)

L uia:;} =, wkrn + L 7)iQkj +- nUke 00 1),

i=l j=l

k=l, ... ,!-l, (4.3)
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for different values of integers /1/.11. Wk "', for each k, IS a sequencc "1 ,'O!11pJex
numbers such that

IVI.'" ~ ~V/.
III 'of

It follows from the Jacobi inversion theorem [X] that (4.3) me!\ \\:1\, be
solved, perhaps not uniquely.

An integral divisor is delined to be a set of points /:3 /3] eli. I'. Let
us denote by U(j3) the vector in Cllli \\ith components " \)' i and
\. VI'" \., 1 . If\.! , i ! ,.... I I vary independently over 11. ( i '.), aries
over a domain.J in C(/-li. Let Q j denote the vector in Cllli wilh components
Dj"I' From the theory of Abelian integrals [8] we have that {J . i I .....

2(1 1) are linearly independent over the field of reals, and thai :.\)1\ \ cclor
in CII 1) can be written uniquely as the sum of a vector in .J and :m Integral
linear combination of D j • Two vectors 1'1 , I'~ in CIf- IJ which cOlTc'pond in
this way to the same vector in J are said to be congruent, and \\l~ -;h~i1i write
1'] - 1'2 . Also in CIlII we shall use the norm defined by L;-~
, I'/. ;2)1;2. We are now in a position to prove

LEMMA 4.1. For each solution 0/ (4.3) there exist real nUlI1hcr, h

such that

YI;

and for large enough /1/

nh; j

,\ 1/'

1.. ... 2(/ I). i ..t.:')

-1,(11

17; , ,\ arc constallts independellt o/n and 111.

Proof: Equation (4.3) may be written as

U(\.)
211 J I

V'I" '\ y' r), L i.J~·i

i ~ I

Since D; . j 1, .... 2(/ I). are linearly independent on the Ile!J eli rea"­
and U(wI ), (U(x) W"') are vectors in CIl-I). there exist unique rcai Ilumbers
b i , ~;"'".j 1, .... 2(/ 1) such that

",(, II

I h,D,

and

WI" i·L9)

Substituting in (4.7) and equaling the eoellicient, of':! tor each /. C:"c!, i,) the
relation (4.5).
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Also since U(ex) EO J, g~"n can be bounded by a constant independent of n.
The proof is completed by observing, further, that W'" -+"'->00 W. I

]f (4.3) has two different solutions, say ex, fJ, then we have

U(ex) = U(fJ). (4.10)

Abel's theorem [8] shows that (4.10) can hold if and only if the two integral
divisors ex = (ex1 ... exl-1) and fJ = (fJ1 ... fJl-1) are equivalent, i.e., ex I'-' fJ.
The following lemma determines the equivalence class of an integral divisor
in the case under consideration, the hyperelliptic Pd. It uses the sheet inter­
change operator h defined by [12].

DEFINITION 4.2. We say that fJ = h(ex) if ex and fJ correspond to the same
point in the complex plane and X 1 / 2 has opposite signs.

LEMMA 4.3. (i) Suppose the divisor ex = (ex1 ... (Xl-!) may be written as

.i ~ 1z(1- 2)

where

i, k = 2j + I, ... , I - 1.

Then a divisor fJ is equivalent to ex ifand only ifit has the form

fJ = fJ1h(fJ1) '" fJjh(fJj) ex2H1 •.• exl-1 .

(ii) If ex I'-' fJ and ex has no pairedpoints (see Appendix 1) then ex = fJ.

We feel that this result should be known, but, since we do not know where
a proof is to be found, one is given in Appendix] .

To proceed, let us define subsets Sjk of C(l-l) as follows.

DEFINITION 4.4. For j :S; 1- 1, k :S; 1- j - 1,

LEMMA 4.5. (i) For j ?: 1, k ?: 0 we have that if s EO Sj-1.k+l then s ­
U( (01) EO Sjk , and, if s EO Sjk , then s + U( (01) EO 8;-1.k:+1 •

(ii) If s EO So/; and s EO S10 , then s EO Slk , k < I - 1.

Proof (i)]f s EO Sj-1.k+l then there must be CXi+k+l , ... , <XZ-1 such that
(note that U( (02)= 0)

1-1

S kU( (01) + I U(o:;),
i=j+l,+l
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/-1

I U(rx;l
( i k-~ 1

and the first part of (i) follows (U( co2)

in the same way.

(ii) There must be a divisor
divisor fJ = C02fJ2 ... fJl-1 such that

0). The second part of (i) is proved

'/_1 and another

s U(a) =, U(fJ).

Thus e, ""' fJ, and we conclude that either n: e fJ or from Lemma 4.3(ii), 1

contains at least two points that are images of one another under h. ]n the
first case the result follows, and in the second we must have either ['v I

h( COl) or ak_1 ~~ h(ak~2)' The first of these alternatives gives "/, , I CO 2 and
the second means that ,1 ~ (col)kJI x 2 ,;, :l ... 1, ... 1 , giving the result each
time. I

With this we are able to prove

LEMMA 4.6. Suppose that we hm'e a sequCI1ce olrectors Sj E Co 1),) 0.....
I - I, such that

Si ) 0, ... , I (4.11 )

Then there is at least one j such that Sj $ Sin'

Proof Assume the contrary that Sj (c' 510 , j 0, .... I I. Since '\0 SIO'
Lemma 4.5(i) gives that '\1 E 501 . Since we also are assuming that '\1 Slii'
we deduce from Lemma 4.5(ii) that SI E Sll' Equation (4.11) then tells us
that .1'2 E SU2 and from the assumption we find '\'2 E S12' In this manner we
deduce that .1'1-1 E SUJI and .1".-1 E SIO, implying the existence of a divisor
that is equivalent to but different from (X[)ll, which is impossible (Lemma
4.3(ii». I

Let us define for all sufficiently small E 0, a set Nlc C ,'}It near tOX)l by

NI ' ~-= {" : " is on the tirst sheet of:;4 and '1, < c l
:.

In the same way we define N 2' near 00 2 , We introduce a set S~k C CII II as
follows.

DEFINITION 4.7. S;k' c {.I' : .I'

ox; ENl ', i=j !. I, ...,j -I- k}.
U(lX),l .x, .. 'xl I. "j E N/. i I .... ,);

LEMMA 4.8. There exists a (3",.(E) such that, if s S;/, then dist(.l . .S·J/,)

OJk(E), and OJ/.(E) -- 0.
£--jn
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Proof There is an Sf E Sjk such that s' = U« 002)j ( ooJk CXj+k+1 '" CXl-l)
where the CXi are those that appear in Definition 4.7 and

j k

S - Sf = L (U(CXi) - U( 0(2)) + L (U(CXi) - U( 001))
i~1 i=Hl

and the result follows from the continuity of U(CXi) on Pl. I

By symmetry, we have 010(E) = OOl(E).
Now we are ready to consider the solution of (4.6), which we denote by

cxm,,,. Remember that this may not be unique. The result at which most of this
section has been aimed is

LEMMA 4.9. (i) It is possible to find moand E > 0 such that for all m > mo ,
there is at least one value of k from amongst m, ..., m + 1- 1, for which all
solutions of (4.6) satisfy the condition

and i= 1,... ,1-1.

(ii) The solutions cxu , cxk•7c -j-l of (i) are uniquefor each kfound.

Proof (i) We suppose that the result is not true. This means that there is
an infinite sequence of values of m (depending on E) for which, no matter how
small E, for all k = m,... , m + 1- 1, there is at least one solution satisfying
at least one of cx~·k E N 2', CX~,7c+1 E N 1'. This means that at least one of U(cxk,7c) E

S~o , U(cxU +1) E S~1 holds. We can therefore find an infinite sequence of
values of m and a function E(m) --+ 0 as m ->- 00, such that at least one of

k = m, ... , m + 1- 1. (4.12)

Since U(ex) E J, there must be a subsequence of this sequence, which we still
denote by m, and a fixed vector So E C<l-I) such that either I U(cxm,m) - So I ->- 0
or I U(cxm,m+1) - So I ->- 0 as m ->- 00. Suppose that the first alternative holds.
The argument is similar in the second case.

From (4.7) we have

Thus for eachj = 0,... , I - 1, U(cxm+i.m+j) converges sequentially to Sj where
Sj == So + jU( 0(1), Now since s~~m), s~~) ->-m""'" S10 , SOl , from (4.12) we have
that

or .i = 0, ... , I - 1. (4.13)

Since SHI = Sj + U(OOI), Lemma 4.5 shows that one alternative of (4.13)
implies the other, so that both hold. But this is a contradiction (Lemma 4.6).
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(ii) If the divisor .t l.•
I
. of (i) is not unique it follows from Lemma 4.3

that ~k.k is in an equivalence class of divisors with at least one pair t/l()cl)'

Setting :t1XJ1 we have that/t'/, E N21J which contradicts the result of (j).

Similar arguments prove the uniqueness of t /,./. '. I

5, ORTHOGO:--JAL POLYNOMIALS lOR SPECIAL WUGHTS

In this section we construct explicitly (at least III terms of the solution \11
the Jacobi inversion problem) orthogonal polynomials for the case in which
a~I(t) PIIl(t), where p",(t) is a polynomial of degree m J/l I I that
does not vanish on S. From this we could, using Christoffel's form ula [1."\].
deal with the case in which a was a rational fraction with no poles on S, but
we do not need this for the sequel. This work is a generalization of that of
Szego [14] for the unit circle and Dumas [3] for the case 1= 2.

Let us suppose that the zeros of P", are at r, , i I"." m. Then the .Jacobi
inversion theorem tells us that there is at least one divisor t \, \ I , .

t; (~ .JIl, satisfying, for II III

15.1 )

In the divisor on the left, we assume that 1', ,,,., r;ii are all on the second sheet
of .!!l.

lt follows [8] that there is a function F(t), meromorphic onY? unIque up
to a constant factor, that has zeros at the points of the divisor on the left and
poles at the divisor on the right. The function R(h(t)) has the same zeros and
poles with the sheets reversed [12]. The function F(r) F(h(r)) therefore has
zeros at it; , h(~;), i J '''', I I and r; . her;), i I" ... m and poles of order
III at OC j , CfJ 2 . Thus

where

F(t) F(h(r)) P(t) Pn,U) const

( I

(.:'.2 )

/'(1) flu
i ,

I.). (5.3)

THEOREM 5.1. Thc jill/etioll Cf"U)

polynomial of order 11 for the It'cight (f",

nomial ofdegree 11l~ I L I.

FU j ) F(hU j ) is ({II orthogollal
p,;,] , II IiI, where p,,, is ({ P()Ir~

Prool The function Cln(t) is defined in the complex plane cut at ,\. \S I

approaches S from the side F(tl) --, F.UI ) and F(h(tj))-> F (I, \. I S
Thus, on S,
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and q" has no discontinuity across S. Since q" is analytic everywhere except
at 00, where q" = O(t"), we deduce that q" is a polynomial of degree no
higher than n.

To check orthogonality, we compute

1= f dt X-(J'2)(r) u (t) tkq (t).
S -;- "JH n

We use (5.2) to obtain on S,

u(t) q,,(t) == Pm1U)(Fc(t1) + F(r1))

== p(t)(rI (t1) + F::1(tl))'
Thus we have

I = -} t dt X·(1/2)(t1) P(t) Fl(t1) t l, (5.5)

where r is a contour enclosing S, which may be distorted to the circle at
infinity, since pet) F-l(t1) is analytic outside S. If this is done we see that
1== 0, k < /1, as required, since pet) F-l(t1) "-' t-"+/-l as t ->- 00. I

We remark that q" is of exact degree n unless at least one Ci.i= 00 1 .

In the next section, we need to consider a sequence of Pm, and in order to
discuss convergence, we will require a more explicit formula for F. We assume
["lel , ... , oc" are on the first sheet.

LEMMA 5.2. The function F(t) may be written on the first sheet as

/-1

F(t) = exp(Xl/2(t1) if1(t)) n 8(oc i )

1=1

where

if1(t)= --2
1

. rdt'(t'-t)l X--:(l/2)(t,)I.lnu",(t')
TTl - s I

v /-1

.'- L In(t' - ["lei) - L In(t' -- Ci.,) 2(n -- v) In(t' - dl)~
i=l ic'°l'-!-]

-'- X-Il/2){tl)1 ±In(t '~"lei)C (n - v) In(t - d)\,
L~l

2(/·-1)

I 'I); r dt' (t' - 1)-1 X-Il/2)(tl')·
j=l ~ L j

(5.6)

(5.7)

Here, (Xi , i = I, ... , I - ], and YJ; , j = J,... , 2(1 - l) are chosen to satisfy
(4.3) with

W,,1YI = -(1jiTT) r dt X:;:(1/2)(t) t l, In Unl(t).
-s

(5.8)

We have used the continuous function 8(ex) which satisfies 8(ex) = "Ie-(1/2) if
lexl>!.
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In the integral, In(t' - exJ is to be made single-valued by placing a cut
from (x, to 00 that does not cross S or C.

If any (Xi should be at infinity, the appropriate limit must be taken. Similarly
for (x, E S but not at an endpoint, the limit asx,- S from a side determined
by the location of (Xi on f}f must be taken.

Proof. From its form F(t) of (5.6) is analytic and single-valued in S cut
along the arcs L j • PJemelj's formula [15] shows that F does not change as we
cross Li , and so F is analytic and single-valued in S'. If t EO S we find. using
Plemelj's formula, that

( 1

F(t) F U) n e~CXi) P(t) ITn/(t).
il

For large I the integrals in (5.7) have an expansion

"\:' a t IL I,

I

where

(5.9)

ai, ~c (l/27Ti) rdt'y II ~J(t') 1'1 I )In cr)t')
'S

I lnU'
11

( 1

I In(1' \, ) 2(11 I') In(t' ( 5.10)

~(j [)

)' /' II' r I[ ~\Il') I~ YJj ( , .
I - I.;

]f 0' is a point not on S, we have

I' dl' X(l;~J(1') 1'1,1 In((;,) r dt' X (I ~I(ll') t'/,I InU' x).
- S -r

where r is a contour surrounding S but not includingx. By distorting r to
00 except for sections from 00 tax and eX to x, we find, for I k·, I.

I' dl' X-([/~)(1') t'I, IlnU' x) 7Ti rdl' X (I :!lU[') 1'1 J

·'S '"/

lfx E S, the same result holds on taking a limit.
Using this formula, we obtain

(II. (1/27Ti) r dl X-1121(t) II,] In cr)t)
, ,S

1 I .\, til

I I dIXII:lIUI)II, I-IIF ell X (1:!IU])ll.l

i)' I 'J

:.;(i II
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where (Xi is to be placed on the first sheet of flt. Thus, with (Xi assigned to the
sheets of (J£ as above,

1-1

ak = (l/27Ti) f dt X:;:(l/2)(t) tic-! In am(t) - t I Uk«(Xi)
s i~1

f
d 1 2(/-1)

+ n dWk + t I Y);Qkj , k < I
OC2 j=l

and this is zero from (4.3).
We deduce that, as t -+ 00, the contribution to F from the integral terms

in (5.7) is bounded. The remaining factor in F is

v

(t - dl)n-v IT (t - (Xi) const
i~l

so that F(t) = o(tn) as t -+ 00.

Thus the function F(l) has zeros at (Xl , ••. , (Xv and an nth order pole at 00.

We define what we shall show to be its continuation to the second sheet of~
by

1-1

H(t) = IT 1:J2«(Xi) pet) Pm(t) F-l(t).
i=l

(5.11)

This function is analytic and single-valued in S', with zeros at rl '00" rifi and
(Xv+! '00" (X!-v , and a zero of order (n - m) at 00. Equation (5.9) shows that
F(h(t)) = H(t) provides the required continuation. On (J£, F(t) of (5.6) is
meromorphic with poles and zeros as required and is therefore the function
introduced at the beginning of the section.

The argument is easily modified if an (Xi should be on S or at 00. I

6. ORTHOGONAL POLYNOMIALS FOR GENERAL WEIGHTS

In this section we come to the problem of finding orthogonal polynomials
Pn(t) for a weight function aCt) satisfying Condition 6.3 below. Our procedure
follows that of Szego [2] for the case of the unit circle. An integral equation
satisfied by Pn(t) is derived. The complication arises that, even for large n,
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the integral equation may not always be solved by iteration, Ho\\c\er. \IC

sho\\ that solution is possible for an infinite sequence of integer' III. Ilith
consecutive integers differing by no more than a constant, and information
about thc remaining polynomials is derived in Section 7 using thc result-- ()I'

Section :;.
Wc shall usc the polynomials of the previolhscction for :1 SCqUCIlCI' ,,(

weight funcllons (J",(I). specified in Condition 6.3, that approximate ,;(1 )

The polynomials of degree m. I!I I. associated \vith weight IT,) I) wc shall
call q(r). (;'(1). The corresponding functions r P will be denoted by F. rand
P, P'. Similarly we shall use \ . Y,' for \';""', <"." I

With II '" defined from the weight "",(I) of (umiltion 6.3. Ill' I1ClltJlC h
1.' thc sequence of integers given by Lemma 4()

11\1 IiI 6.1. For III ":", !J},Oi'idl'd III is large e!lough. \Ie hal'(

fL,,,P,I!/ !fit) .I,dl

11'111'/'e

""i I ;1 Ail. (HI /I (f ! h, ! I

1\(r.I) (q(l)i/II')

and fL,,, II (/ cO/l.llWI!.

q(l)(/(f)) (6.21

P}'oof. The function 1\(1. 1')(1 I) 1 I, a polynomial tn t of degree II!

and the coefficient of ("" is i7qu). where ~ 0 is the eoefTicient of , ," I ill
q'(t). From the orthogonality of Ii" . we fine!

" dt'}( 11"1(1') (;(1') A(I. I HI.,
/ ,I J p)1 )

Iji/(I) I ,II .r I ""in (lif'l t "p,,(f l.
',\

We shall show later that the integral on the right-hand side of (6.3) cannot bc
zero for large enough m. We therefore normalize Ii", so that the r.h.\, o!'
(6.3) is q(f).

For ( S, we have

I df r 1121((') (J)t'l A.(I, t')(f
.\

~ I dl' X 112I(1i')(q(l) p'(f') F i(l )
,/

where r is a closed contour including S but not t. We have used an argument
similar to that of Theorem 5.1. No contribution results if r is distorted to
Cf~, but to compensate we IllU,t add the residue at" I. This give, (\.1) With



PADE APPROXIMANTS

Using (5.2) and the definition of q, we obtain

21

fLm = i7rX-(l/21(t1) p~l(t)(F(h(t))(F'(t) + F'(h(t)))

-- F'(h(t))(F(t) -+- F(h(t))))

= iTTX-(lj2)(tl) p;,l(t)(F(h(t)) pet) - P(h(t)) F(t)). (6.4)

This is a function meromorphic on 8(, invariant under t --+ h(t), and bounded
at 00. The only such function is a constant. I

Before proceeding, we shall obtain some information on fLm , the constant
of (6.4).

LEMMA 6.2. For m E E, we can find fLo > 0 such that I fLm [ > fLo, if
m>m().

Proof We begin with the formula (6.4) and use (5.9) to obtain

fLm = iTTX-(112)(t1)(QP(t) F'(t) F-l(t) - Q'P'(t) F(t) P-1(t))

where
1-1

Q = n 82«(1:;).
i=l

We shall evaluate fLm by taking t --+ 001 , The second term vanishes, and the
first gives

I

fLm = iTT exp(az' - al) n8(exi) 8(ex/)
i=l

where al , ai' are given by (5.10) with n = m, m + 1.
Because of the convergence of am to a, we see that for large m, a/ - al

can be large only if some ex;, ex/ are large, since the explicit n dependence
cancels, and "1)/ -- "I)j cannot be large from (4.5).

Thus we consider the form for large ex of

(l/27Ti) Jdt' X-(1/2)(t') t'I-1In(t' - ex)
s ~

......., (In ex)(2TTi)-1 r dt' X~(1/2)(t') t'l-l + 0(ex-1) ,....., -t In ex + 0(ex-1).

·s

So from (5.6) we deduce

" 1-1

fLm = TI (1 + I ct.;' 1)-1 TI (l + I exi 1)-1 fL
i=l i=v+l
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where fL, fL- 1 are bounded independent of m. The result follows from
Lemma 4.9. I

To avoid excessive complication in the subsequent analysis, we shall
assume from now on that 5 consists of I disconnected components, so that
no point Ci lies on 5 and only one arc ends at each point d; . This might be
regarded as the general case, and certainly the assumption holds when all
points d; are collinear.

Suppose that we associate with each end point d; , i I, ... , 2/, a set of four
points on 5, aii), a~i), a~i), aii) not at di • As we travel along 5 from d; , the four
points are reached in the order given, and all are passed before we reach any
of the points associated with the other end. Let us call the analytic Jordan arcs
formed by following 5 from d, to the four points, Aiil , A~i), A1i

), Ai').
From the form of ep(t) given by (2.3), it is clear that, near t= d1 , epU) is an

analytic function of y ~- (t d1)1/2. The variable y is suitable for use as a
local variable on fft near the point d1 • It follows, since Z(d1) 7'- 0, that there
is a neighborhood IiJ of 0 in the y-plane, in which ep, X-(1/2) are analytic and
dc/>/dy * O. The curve S -.C {y : Re ep(y2 L. d1) "c O} is an analytic Jordan arc
in the neighborhood of y = 0, through which it passes. If a point t on one
side of S corresponds to .1', then t. corresponds to y.

Now suppose that ail), a~l), a~l), a~l) are chosen so close to dl that they lie
in the domain IiJ, and similarly for the other ends of5. Each of the four points
is mapped into two points in the y-plane,-b~1), --b~) , __ b~l) ,-W), bi1),

W), Wl, bill lying on S in the order given. Let us denote an arc contained in
S, having end points a, b, by Sea, b). We may suppose that the '--- side of A~l)

is mapped into S (0, b~l)) and the -. side into S(O,·-bi1).
We assume that the weight function aCt) satisfies

CONDITION 6.3. Let aCt) be a complex function defined on S. Then

(i) there exist real A, B such that A . aCt)! B > 0, t E S;
2[. .

(ii) for t, t' E S - Li~lAi'l, there eXIst constants L, A> 0 such that

a(t')-l -- a(t)--l i < L(ln 't'- t 1)-1-.1:

(iii) for t, t' E A~l)

: a(t')-l - a(O-l < L(ln ! y'- y i)-I-it

(6.5)

(6.6)

and similarly at the other ends.
We show in Appendix 2 that these conditions imply a fourth.

(iv) There is a polynomial p",(t) =, u;//(1) of degree m -- I I such
that for large m

SUP! u(l) cr,,,( 1)
Ie.\'

const( In IJI) I
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From now on, we use the sequence of weight functions am given in Condi­
tion 6.3.

Several lemmas needed later now follow.

LEMMA 6.4. Let us define in S'

(
Xl/2(t) . )

X (0 = exp 1 j dt' (t' - 0-1X--(l/2)(t') In a (t')
m 27Ti s + m

(6.7)

and X(t) in a corresponding way. Then,for t E S, the limits X+(t), X-(t) exist and
Xm(t) ---+ X(t) uniformly as m ---+ 00, for t E S' and Xm±(t) ---+ X±(t), uniformly,
tES.

Proof The proof is analogous to that of Szego's [16]. Let us suppose
that we wish to study the limit as t approaches a point to E A~ll on the + side
of S. Then we consider

1 = Xl/2(t ) f dt' (t' - f)-I X-(l/2)(t') In aCt') (6.8)
1 A(l) t-

3

for the contribution to the integral in (6.7) from S - A~I) obviously has a
limit as t ---+ to+ . Define s(y) = In aCt) and .K(y) = X(t)(t - d1)-I. Then I can
be written

and if we set s(-y) = s(y), we have

Since from (6.6) s(y) satisfies, for y, y' E S(-Wl, W l),

I s(y) - s(y')1 < const(ln Iy - y' 1)-I-A (6.10)

(6.11)

a standard argument shows that the limit of1 exists at t ---+ to+'
To discuss convergence for large m, stilI with to E A~I), we again need to

study only

1m = .K~/2(t) f dt' (t' - f)-I X=(l/2l(t') In am(t')
A(l) .

3

= X 1/2(y) f dy' (y' - y)-1 X-l/2(y') Sm(y')
S(_b~l).b~l»

with sm(Y) = sm(-y) = In a,.,lt).
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Following Szego, we split S( -b!/\ b~ll) into an interval E containing those
points with distance from Yo no greater than mJ(ln m) '\ and its complement
E'. For large enough 111, E C S( b~ll), b\I)). We have

X (I CJ(y)(I", !) 1(11'(.1 r)I,\<IC'(r)CI",(y
-I

.1(.1' ))

(.1,,,( .1') s( .1')) I.. ill (r
. I

i dl" (1'
'1'

CI( y' ) ,I( y))].

Now S( bi!), bill) is an analytic Jordan are, and P"Jl" dl) is a polynomial
in)' of degree 2m. A generalization of the extension of Bernstein's theorem
proved by Widom [17] shows that. for l' 0 5( 171,1). WI).

consl III ,up p",
.\' { h ~ 1 \. Ii ~ j

It follows that

sil,(r') s",(Yo) <~ const m .1" .I'll' 1 L

Szegifs argument now applies to (6.12) to give the required result.
If t is near another end. the argument is similar. while if rES L~;I .4~1 .

a analogous argument applies. without the need for a transformation or
variable. I

Let us define the function H(,. t). r on the first sheet"oL;f bv. .

, on first sheelIn(tIn(lIn(t ,

(h, ! -+)

\ Xl "(r])
0(» exp-----c- r dr' (t' t)l X (] :!I(t') In(1'

I 2m '.1

, on second sheel,

In the integrals. the logarithms are determined as in Lemma 5.2.

LEMMA 6.5. (i) The jill1crioll H(lt, r) is ulliformly bounded jill' r \.
independent of,. There exists a lIe(f(hborhood ('j" of r O. 'j' C '/. suelz rlz(/[
for r E (/. H(x. r:! d l ) is all alla/yric(zllleticm ofr lI'irh deriUlril'c lIllijiml/ll
bounded. independellt of y. alld simi/arh IICO!" the other ('/Idl ofS,
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+ y rdy' (y'2 -- y2)-1 -+ lln( y2 - Z2).
~ Yo

(ii) For t in a closed bounded domain ofS', H(rx, t) is a continuousfunction
of rx on the dissected f!ll, using the topology provided by the local coordinate.
(The dissection of:3f referred to makes f!/t simply connected in such a way that
the pathfrom CfJ 2 to rx is that used in the definition ofuk(rx).)

Proof (i) For t E S - L~~1 AI), the boundedness follows immediately,
if necessary with the help of a contour distortion.

Suppose then that y = (t - d1)1/2 E!d. In a way analogous to that in
which we obtained (5.10) we see, for rx on the first sheet, that

HtCrx, f) = e(rx) exp I~Xl/2(tl)({Y dt' (1' - t)-1 X-(1/2)(t1')

For If choose a neighborhood of y = 0 with boundary a positive distance
from that of P/. Let (3 E S' be such that Yo = ((3- d1)1/2 E [:1- f!2' and Yo is
at a positive distance from !fiJ'.

If C\: is not near any end of S the contribution in (6.15) from f~ obviously
satisfies the statement of the lemma. Suppose then that z = (rx - d1)l/2 and
z E g. We write f~ = f~ + f;, and need only consider f; .

We have, using t' = y'2 + d1 ,

}X12(11)r dt' (1' - f)-I X-(1/2)(tl') + 1ln(t - ex)
B

= X 1/2(y) y rdy' (y'2 - y2)-1 x-n/2)(y') -I- -~ In(y2 - Z2)
Yo

= X-(l/2l(y) y rdy' (y'2 - y2)-1 (x-n/21(y') -- X-O/2)(y)
• Yo

(6.16)

The analyticity of x-n/2l(y') in y'2 shows that the first term in (6.16) is
analytic in y, while the remaining terms give

In(y - z) + -H1n(yo + y) - In(yo -- y)) + const.

The treatment when rx is near another end of S is similar.
The term f~l may be treated in the same way, but now we have

d 1

Xl/2(tl) f dt' (t' -- f)-I X-(l/2l(tl') == (analytic in y).
J{J

The case of large rx is treated as in Lemma 6.2, and the discussion when rx
is on the second sheet is similar to the above.
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const III In III

(ii) The continuity is immediate except when lX changes sheets, which
it can only do by crossing the arc of S ending at dl . We must therefore show
that

H1(lX c , t) = H2(lX_ , t)

for lX on the arc of S ending at dl •

Now we see that

u: _d}r dt' (t' -- f)-I X (l/2)(t1') ,-- 2 / dt' (t' - f)-I XII/21(tj')
~L ~~

c= r dt' (t' -- t) 1 X-Il/2)(t/) -- fl dt' (t' - t) 1 X Il:!)(tj')

d1 •

-r- dt'(t'·- t) j X·(l/21(tl') - .r,d
1
dt'(I' f) 1 XII "I(lj')

- ill

= - f- dt' (t'-- t)l X-(l/2)(t/).

Using (6.15) and the equivalent formula for H 2(lX, t),

H 2(lX, t) = 8(0:) exp )-~XL2(td r' dt' (t' - f)' I X 0/2)(t/) - ~'In(t
•. r

the result follows. I

LEMMA 6.6. There is a neighborhood (}!,5( b~l), b~l) in which X,,,(l" dj)

is an analyticfunction ofy. For y E 5(-b~1), bkl
)

!.~K'"(-~5~/j) I

for large enough 111. where the constant is independent of 111.

Proof If we substitute all/l(t) = Po Il;T~l (t -- r i ) into (6.7) we tind

\, XI/"(tl)' , , t'Xm(t)=ex p /'-2-",--J dt (t t)-IX+I!/tl(t').ln po
, 7T1 S

'''. '/1tl In(t - r,) \ .

Lemma 6.5, along with a similar result for the In Po term, gives the analyticity.
To discuss the derivative, we follow the approach used in Lemma 6.4. and

the problem quickly reduces to obtaining a bound for the derivative of I,,, of
(6.11). This means that we need a bound for the derivative of

{nI7)

In this expression. we are to take the limit as y approaches S( He', bit )

from one side. The function S,,,(l') is analytic in a neighborhood of S\ 17\",
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WI), so that (6.17) is analytic in y for y in a neighborhood of S(-W), b~l».

We shall differentiate (6.17) and then take the limit as y -+ S(-W), WI).
Differentiating with respect to y and then integrating by parts gives from

(6.17)

f ( d(X-U/2) ds )
dy' (y' - y)-l sm(Y') , + X-U/2)(y')-!!.f--

SH~l),b~tJ) dy dy
btl)

- (y' - y)-l X-(l/2)(y') Sm(y')13 . (6.18)
_b~tJ

The arguments of Lemma 6.4 give the required bound except for the term

f dy' (y' - y)-l X-u/2)(y')(dsm/dy'). (6.19)
S( _b~l) ,b~l»

We see from (6.13) that

dsm/dy < const (6,20)

In the same way as in Lemma 6.4, using the generalization of Bernstein's
theorem on (d/dY)(Pm(y2 + d1», we find

so that

IdSm dSm I <' I' I- - -- < const m" 11 - Y ,dy' dy J I

Now write (6.19) as

f dy' (y' - y)-l X-(l/2)(y') ds~:
S(-b~l) ,bill) dJ

= dSm f dy' (y' - y)-l X-(l/2)(y')
dy SC-b~l) ,bill)

-+- r dy' (y' __ y)-l X-Cl/2)(y')( dSm _ dsm )
, JE dy' dy

+ r dy' (.v, _ y)-l X-(l/2)(y')( ds~ _ dsm )
JE , dy dy

where £ = {y' : y' E S(-b~>, W», Iy' - y I ~ m-1
} and £' is its complement

in S(_b~l), WI).
The limit as y -+ S(-W), W» now obviously exists and the bounds (6.20)

and (6.21) give the required result. I

It is necessary to relate F(t) to the function <p(t) of Section 2. This is done
by the following,
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LE\1N1A 6.7. The fimetion <P(t) may be writti'll on the firsl shee! ii' c!,( I)

(!)I(t ),

VI "'( )\ I,' .) /' I' ,,,- II !( ,m (I (I
,\

I) I Y 'I :21 1t ')lnu

:211 II ,
'\~ jL h,

I . r
!II (I' Inlt

whcre <Po is purc imaginary, and b i is defined in Lemma 4.1. /n the I!le

branch ol'ln(1' dl ) is chosen as in Lcmma ),2,

Proof The function P(1). given by

Pit) (li7Ti) r !It'(I' r)1 X il :2'(1)
'S

is analytic and single-valued in 5;'. For I Fe S. Plemelj's formula [1:iJ gl\C>,

Thus we have

P (I) P (I )

and it follows that

InCt

ol{J I)

'I hi r !II' Y il :21U I ')(T'
j I .J.

, ,

gives a continuation of (jJ(t) onto the second sheet off? If tim i'Ulll'tlOIl \.;
continued across a possibly different arc of S, the original rUlletl!)!l INI)

results.
This discussion assumes that no arc L i has been crossed durin!! the l'OIl­

tinuation. If this should happen, ·j27Tib, must be added for L'ach ~lll' I,
crossed. The conclusion is that CPCt) is a multivalued function dC'fined Ull/?
any determination of which having on sheet i, i I, 2 the form Il' (I) pure
imaginary.

As in Lemma 5.2, the coefficient of I I, in an expansion of the i!1lC?ral', III

brackets in (6.22) for large t is

(1/7Ti) ( dl' X 11:21(1') (! I In(1'
·s

.. If I

.1, dt' X 11:21(t/) (I I

:.:(1 IJ

L hi (
, I

:2({ I!

L hjQ1

:.!(,' Ii

'> hiLJ;"
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(6.23)

and this is zero for k < I from (4.7). Thus, as t --+ 00, q\(t) ,...., In t + canst,
W2(t) ,...., -In t + const.

The methods of the previous lemmas may be used to show that <P(t) is
analytic on Yl in the local variable (t - dYj2 near t = d f • It also may be
deduced that <P(t) - epo is pure imaginary at t = d1 •

The difference between <P(t) and ep(t) is a function analytic on Yl, having
pure imaginary periods, and the only such function is a constant [8]. The
fact that ep(d1) = 0 completes the proof. I

LEMMA 6.8. Suppose that rm(t) is any polynomial in t of degree m, such
that SUPtES I rm(t) I == 1. Define the degree m polynomial Rm(t) by

RIn(t) = p;;} r dt' x:;:n j21(t')(a(t')
·s

- aln(t')) K(t, t')(t' - t)-1 r",(t').

Then, if m is large enough, for m E 1: we have

I R",(t)] < const(ln m)~'Y (6.24)

where the constant is independent olm and r", .

Proof The first step is to prove that F, F' are uniformly bounded on S.
From (5.7) and (6.22), we have

1-1

F(t) = etlq,(1) TI H(rYt , t) Xm(t) exp
i~1

( 2(/-1) I-IX1j2(tl) tl ~i t dt' (t' - t)-1 X-nj21(tl') - l1epO( (6.25)

and the boundedness follows from Lemmas 4.1, 5.4, 6.4, 6.5, and the fact
that Re ep = 0 on S.

If t E S - L~~1 A~i), Szego's method applies almost directly. Since K(t, t')
is a polynomial in t' of degree m, the generalization of Bernstein's theorem
used in Lemma 6.4 shows that, for t, t' E S - L~:l A~i)

I K(t, t')1 < const mit - t' I sup] K(t, t')1 .
t'ES

(6.26)

The definition (6.2) of K(t, t') shows that its modulus is uniformly bounded
for t, t' E S. The result (6.24) follows after splitting S into a part with points
distance Ccm~1 (In m)-l from t, and its complement, just as in Szego.

Now suppose that t E A~I). The contribution to R",(t) from the integral over
S - A~I) may be bounded, using (6.25), by

fL-l(1n m)-I-~ const r dt' x-n j21(t')
tn ( ) +

• S-A3'

which satisfies (6.24).
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(6.27)

To treat the remainder of the integral, we shall need suitable bounds for
K(t, t'), which is

K(t, t')= (F,(t) L(t)(F/(t') L'(t'))

- (F'(t) F_'(t)(Ff(t') F_(t').

If we write

(6.28)

then one part of (6.27) becomes

F,.(t)F'(t') -- F~'(t)F!(t')

c",(<I, (t) '/>, (1")), .( t) , . (t'.J
Alil--f, Amt-

:< .I /h (t') T (r) T '(t'J
"I( ,~, >~ (6.29)

From Lemma 6.5 and a similar result for the integral over L i in (6.25) we
see that the expression in brackets in (6.29) is analytic in y' for y' E :1, with
bounded derivative, and vanishes at y' y. Since the other factors in (6.29)
are bounded on S, we deduce for y, y' E !:;T,

i F+(t)F~'(t')- F'(t)F,(t'): < canst i y' - Y i.

A similar argument applies to another part of (6.27), so that we write, for
y, y'Ef!!

F.(r) F'U')- F '(t) F, (t') F(t) F 'U') F'(t) F (t')

(6.30)

where G(y, y') is analytic in y, y' and

C<Plt'lg(t) g'(t') - C,;lIlg'(t) get') -~. (.v --- y') G( y, y').

Since the left-hand side of (6.30) vanishes if t t', it follows that the term in
brackets on the right-hand side of (6.30) vanishes when y' = y. We use
Lemma 6.6 to bound the derivative of XIII with respect to .v' by canst m. The
other terms in the bracketed factor in (6.30) have a similar bound. We may
therefore conclude that the bracketed factor is bounded by const ! y !. y' m
In m for y, y' E S(_-Wl, Wi).

The rest of K(t, t') may be treated as above, so that we end up with the
two bounds for y, y' E S(- Wl • W))

K(t, r') const( r

const .I' I' .1'

I' )

I' III In Ill.

(fl.3 I)

(6.32)
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We now have for t E A~I)

If dt' X-(l/2l(t')(a(t) - a (t'» K(t, t')(t' - f)-I r (t')1
A(l) + m In

•
< const (In m)-H J I dy' II y'2 - y2 1-1 I K(t, t')!. (6.33)

S(O.b~l»)

The integration contour in (6.33) is split into a part for which Iy' - y I <
m-1, in which bound (6.32) is used, and its complement in S(Q, b~I», where
bound (6.31) is used. The result follows immediately. I

We come now to a basic theorem.

THEOREM 6.9. Suppose that S has I components and that aCt) satisfies
Condition 6.3. Then, provided mE E is large enough, Pm(t), the orthogonal
polynomial oforder mfor weight aCt), is unique and may be normalized so that

(6.34)

where Ym(t) is uniformly bounded in any bounded region of the complex plane.

Proof It follows from Lemma 6.8 that, for large enough m, integral
equation (6.1) can be solved uniquely by iteration. There is also no solution
of the corresponding homogeneous equation so that the integral in (6.3)
cannot be zero, and Pm(t) is unique up to a constant factor.

The form (6.34) follows immediately from our previous results. I

7. CONVERGENCE OF PADE ApPROXIMANTS

For the values of m in the sequence E used in Theorem 6.9, the convergence
in capacity of the diagonal Pade approximants tof(t) for t in a closed bounded
domain not containing S follows immediately from the result of the theorem
and (5.6). For the other integers, it follows from Lemma 3.4, that only the
basic integers need be considered.

LEMMA 7.1. There exists an infinite sequence E' of basic integers and an
integer mo > Q with the following properties.

(i) If m E E, m > mo , and v is the largest integer in .E' that satisfies
v <; m, then Pm(t) = ret) pv(t) with some polynomial r(t) of degree <;1.

(ii) The difference between two consecutive integers in E' does not
exceed 21.

Proof (i) From Theorem 6.9 it follows that for each m E E, greater than
some mo , the orthogonal polynomial of order m, Pm(l) is essentially unique.
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From Lemma 3.4(ii), then, either 111 or (m I) is a basic integer. Let 2.,"

{v : v m o , v is basic, v or l' I E L;. Since the consecutive members ill l..'
differ by no more than I, m and v of the lemma satisfy the relation m l' I.
The polynomial Pm(t) can now be written as asserted in the lemma and the
degree of ret) cannot exceed I.

(ii) Follows from the fact that if m, l' are as in (i) then J)l --- I' I. I

LEMMA 7.2. For each basic integer l' mil '0/, there exist m. m "
Ivith 111* 111, 1111 - -- v 2/, and polynomials Q, Q*. D, o/degree 8/. sl/ch
that

Q(t) PII/(f) Q*(I) PIli (t)
p,(t)- - ---

D(tl
(7.1 )

D(t)1 0 for sOl11e t.

Proof The proof follows from Corollary 3.6 and Lemma 7.1. I

Let Res' be a closed, simply connected, bounded domain, and L j be so
chosen that they do not intersect R. This choice of f- i does not alter the
results established so far. Since Re 1>(t) is the Green's function, it may be
shown [II] that the locii Re cp(t) 1\ for different positive 1\ are nested so that
every point t for which Re cp(t) .~.. 1\ is contained within a closed curve
making up part of the locus Re 1>(t) ~c 1\' provided that ,\ ,\',

Define M, M' by

M inf(Re cp(l)), M' sup(Re CP(I))
!rei< f~R

and denote by R' the closed, bounded domain containing R given by

R'~=: t : M /l 01 Re CP(l)H':.

For each basic integer l' of Lemma 7.2 let FrII(t), f~,,*(t) be the functions (5.6)
corresponding to weight function p;l(t) and values of n m, m*, respectively_
As in (6.28) we write

We normalize p,.(t) by requiring that

D(t) C~ TIU - til

and
sup [I Q(t),2
leR

Q*(t) 2J L (7.2)

LEMMA 7.3. Let 1]m(f) Q(t)g(t) C.Jd'i!IQ"(I)g"(t). L1 m* IJI, ([lid
a determination ofg, g* is chosen to make 1],,,(t) .Iingle-rall/ed in R ([nd Yj,.
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X;;,l e- m <P(QFm + Q*Fm*). Then given p, > 0, for sufficiently large m, there
exists oo(p,) > °such that i 1]m(t)[ > Oo(p,) for all t E R - R" where R" C Rand
Cap (R,,) :S; p,.

Proof First we show that for each m, 1]m(t) 'ft °for some t E R. If this
was not the case, then one would have that

Fm(t)
Fm*(t)

Q*(t)
- Q(t)' (7.3)

Equation (7.3) implies the relation among divisors

(fJ~-ln*cx *r ... r oom*--m
1 rnl ITi2

f31h(f31) f3;h(f3;) 001;00;;

y1h(y1) Yih(y) oolioo;i (7.4)

where CX m , cx",* are the integral divisors to be used in (5.1) corresponding to
Fm , F1/I*' and f31 ,... , f3;, Yl ,... , Yi are the zeros of Q*, Q in the complex
plane. We assume that all common factors of Q*, Q have been removed, and
hence f3i 1= Yi , any i,j. Equation (7.4) is equivalent to

Since cx'" , CXm* have no pairs, the only possible way for (7.5) to hold is that
= j == 0, which implies that

(7.6)

This means that cx'" has 002 for some of its components, which is impossible
from Lemma 4.9. Thus for each m, 1]m(t) =f. °for some t E R.

Further, for each m, 1]",(1) is an analytic function of t E R. Therefore
Cap {t : ]1]1II(t)] = o} = gfor any g> °implies that 1].,lt) = °for all t E R.
Since 1]m(t) is not identically equal to zero, given p, > 0, for each m, one can
find om(P,) > °such that

Cap{t : ! 1]",(1)1 :S; om(p,)} = p,.

Now, suppose that the result of the lemma were not true. Then one could
find a subsequence {k} such that 0k(P,) --+k_ro 0. The sequence {k} may be so
chosen that m* -- m = Ll is fixed. In the following, we show that this leads
to a contradiction.

Let ak and ak* denote the set of the coefficients of the powers of t ap­
pearing in Q, Q*, respectively. Consider the point pk = cxI,cxlc*akak* E /7 C
jilW-ll Cl6l where £J.lI2(H) is the Cartesian product of 2(1 - I) identical
copies of :JIt. Since the canonically dissected fJ? is compact, and owing to
condition (7.2), ak , ai'* are confined to a bounded subset of C8!, Cf' can be
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chosen to be compact. Hence there is a subsequence of the values of {k;,
which we still denote by {k}, such that Pi, --~"~'l) P E Y'.

The functions Q(f), Q*(t): CRr R -+ C are continuous on CHI and
analytic on R. Also since tlcl:,,), tj(u.r.*) are bounded (Lemma 4.1), they
contain a convergent subsequence. Denoting this subsequence by {k{ again.
and noticing that H(n:, f) is continuous on y' and analytic on R. we have
from (6.25), that Fllf), F,*(t) :'1 R ~ C map a convergent seq uence i11'1

into a convergent one.
Thus Y!k(t) y)(pl., t): il R -. C for each k. is continuous on l and

analytic on R. And since p' '> P, y),,(t)'+ Ylo(t) YJ(P, f). The compactness
of /?. together with the continuity of YII,(t) for Ie R. implies that the con­
vergence is uniform with respect to t E R and hence YloU) is analytic in R.

Further. since 81..(fL) --~/.~, O. we have that

Cap :t: YJo(t) 0: o

and hence, because of the analyticity of Y)o(t l. Y)o(l) 0 for all Ie R.
Also since pk ~ P, ([/,_ ~ Oi,* -~ au, ([0*' C1/,' & '\f,'x -- .. '\0' :\ok:,

and

We have used that X,~l(t) has a limit. Since Q(I). Q'(t)~ Qo(t). Q,,(l). ,:;

Yj-' ,B/'. '1/' for eachj. Since i{y/':,o: is a finite set. one can find a set R" e R.

such that Cap(R,,~) p)2 and for large enough k. {[y,::')',": '0'1: (:.: R" c

Now

YJ,,(t) 0

.J,',(i) Q. *(t) t)
('. ,.'

QU) g(t)

e.J'I'lrlQ,,*(J) iio'(t) I

Q,,( I ) g,,( t ) \

fori ire j f -'I

where R;, 2 C R is some set with Cap (R;, J fL2. It is obvious now. thai

f;,(t)

F,,(t)
Qo'(t)

Qd(tl
fori R'."

Equation (7.8) implies the relation (7.4) among divisors. with \",
replaced by,,,. Y,,* on the left and the ~, . 'f', replaced by ~o. y," on the right.
The same argument leads to the same contradiction as in the case of (7.4). I

LIV1MA 7.4. The polynomial p, ol(7.1) has thefc)lhlll'ing properties.

(i) Gh'en fL O. there exists ",,(fL) such fhat,}i)r ('(lch I' . 1'"

p,.( r) I

fc)!' (III t R cxccpl/C)!' a sci oim/,acin /L. Ililh Ii ,up! 0(1) ,
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(ii) There is a constant independent ofv such that

IPv(t)! ~ canst e(9j10)mM

35

for all t E S.

Proof (i) Using (5.11) and (5.6), it is not difficult to show that, for t E R,

IFm(h(t»! < canst e-mM.

Thus, for t E R, we have, with (6.34)

Pm(t) == Fm(t) + O(e-mM).

A slight change in the argument of Section 6 leads in the same way to

(7.9)

Pm.(t) = Fm*(t) + O(e-mM). (7.10)

Lemma 7.3, along with (7.1) gives the required result.

(ii) Consider the 91 locii OJ = {t : Re Q(t) = jMllO/},j = 1,... ,9/,
which are closed, nested, surround S, and are contained in R'. Let the mini­
mum distance between the adjacent locii be g, Then, since D(t) is of degree
~81, there must be at least one value jo of j for which all the zeros of D are at
a distance of at least 19 from OJ . For t E OJ we have, from (7.1), (7.9), and

o 0

(7.10), that

IpvCt)! ~ const(lg)-81 e(9j10lmM

~ canst e(9j10)mM

for sufficiently large m. The constant may be chosen to be independent of v
and t. The result now follows from the maxium modulus principle.

We are now in a position to prove the main result of the paper.

THEOREM 7.5. Provided that Condition 6.3 is satisfied and that S consists
of I components, the sequence of [NIN] Frobenius Pade approximants to J(t)
converges in capacity to J(t) as N ->- 00, in any closed, bounded domain Res'.

Proof The result for an arbitrary N will follow if it is true for the basic
integers v, and for a closed, bounded simply connected domain S'. For this,
using Lemmas 3.1 and 7.4, we have that

IJ(t) - [vlv]1 ~ IPv(t)!-1 r-1t I dt'l I a(t')l I pit'):

(7.11 )
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where
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r inf I
leR
t'".\

I' and I i ill
, , a(l)

It is now obvious that for any fL. E O. the right side 01'(7.10). by Increasing
!II, i.e .. I'. may be made~E. which proves the assertion. I

The aim of this appendix i, to find the equivalence elas, o! ~i divisur
(\ '! ..... v; I' that is, all divisors!~ /:5 1 ,,,13; 1 such that !-J ~ \. For
terminology and a description of the theorems used the reader is referred to
Siegel [8].

We shall call two points YI ' Y" on .71 a pair if YI Ii(y,,). They eorre,pond
to the ,a me point in the complex plane but are on different sheet.;. We ,upplhe
that , contains m pairs and I I 2m other unpaired points. with /1/

0, I .....
NO\\ any differential of the lirst kind ill 1 mal' be written as

ill\ 77(1) X 'I ")(1) dl

with ;-: Cl degree (/ 2) polynomial. If \ {hI'. Ihen 7T must have Icros iil the
complex plane at the unpaired points and also at the points eorre,ponding to
pairs. iii (/ I 2Jrl) f I m in all. Thus the dimension h of the
vector ,pace of first kind differentials such that \ (hI' i, h

(! I /1/) 111. Suppose that 1I is the dimension of the vector ,pace !If
function, of meromorphic on '.J/! ,uch that \ I t: The Riemann Roell

theorcm ,hows that

a h f

III I .

1\

i\ I'unction/for which, 1 (i,

/ Q",(I ). R,,,(li

where R,,(1) is a degree m polynomial which has it-; zeros at the paired poinh
of Y. and Q".(t) is any degree 1/1 polynomial.
space o!' ,uch functions is 1/1 I. and since if

function t~)r whichv- 1 ;fhas this form.

It follow, that I-J ~ v. if and only if
with arbitrary.

The dimension of the vector
/1/ I. it follow, that cver)
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In this appendix, we demonstrate that Condition 6.3(iv) follows from
Condition 6.3(ii), (iii). Given a bounded function pet) satisfying, with p = a-I,
(ii) and (iii) of Condition 6.3, we demonstrate that it is possible to find a
polynomial Pm(t) of degree m, such that, in the case when S consists of I
separate arcs,

sup i pet) - Pm{t)1 < const(ln m)-l-A.
/ES

(A2.1)

The proof uses the orthogonal polynomials of Section 5 for weight a = I.
We shall use the notation of Section 6. Since Xm(t) =c I, we have

F(t) = em<i>(t)g(t).

There is a sequence of integers, which we call .E, for which fL;;,l is uniformly
bounded.

The function Krn(t, t') is constructed as in (6.2)

(A2.2)

Define the degree m polynomial Qrn(t) by

(A2.3)

It follows as in Lemma 6.1 that

QmU) - pet) = fL;;,l Is dt' X=(l/ZI(t') K,Jt, t')(t' - t)-1 (p(t') - p(t)). (A2A)

To study this integral, we follow the method of Widom [17, Sects. 8, 11],
Let us consider the contribution to (A2A) from Sl , one component of S,
which we shall assume ends at -I, 1 (d1 , dz). We shall also assume t e Sl .
The change of variable

t = lCs + S-l) = f(s)

may be taken to map the exterior of Sl into the exterior of an analytic Jordan
curve T1 in the s-plane. The curve T 1 passes through the points 1, -1. Each
arc of T 1 joining 1, -I corresponding to Sl' in such a way that points s,
8-1 e T1 correspond to the same point of Sl .

Equation (A2A) may now be written

Qrn(t) - pet)

= -2fL;;,1 f ds' Yes') K,,/t, !{J(s'))((s' - s)(s' - S-l))-l (p(!{J(s')) - pet))
r ,
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~I

Y(s) = I (zjJ(s) - d;)-(l~).

;,-.3

Precisely as in Lemma 6.8, we write Kin as the sum of four terms, one of
which is, with t, t' EO 81 '

F(t)F'(t') - F,'(t)F (t')

K (say). (A2.5)

I. Then we have that the contribution from

1f we substitute t' zjJ(s'), the factor in brackets in (A2.5) becomes an ana­
lytic function of s' in a neighborhood of T 1 • which vanishes when 1" s. We
may therefore write

where .~(s', 1') is uniformly bounded. For later use we note that

yes 1) .~(s J, .1')

Y(S'I)(S] 1')-1 e-,,,U'c(/JutJ\Fjt) F '(f) F'(t) F (I))

= - }X(l/21(t)(F+(t) F '(I) ... F:(1) F_U» C 2""tll)

where we have assumed that cPU) is continuous as we pass round 8 1 except at
- 1. Using Lemma 6.2 we find

We now follow the procedure of Widom. lf 27TWi is the change in cPU) as
we pass round 81 , we introduce a new variable z by

:: = exp[(1jw)(cP(~J(s» - cP(1»).

This is a conformal transformation of a neighborhood of T 1 into a neigh­
borhood of the unit circle, which has an inverse transformation I' (1(:::).

Suppose that

mw·1 = n + Yj

where n is an integer and YJ!

K to (A2.4) is

I," 2f-L~/e2111,tll) r d::' (d8jd::') Y(8(::') ::"::'''::');:''
-,I

-7((I(z'), 1')((1(::') s 1).1 (p(1f(f}(z'») p(t».
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We note that

r 1 = exp[(1/w )(cp(l{J(s-1» - cp(1))]

and we may write

8(z') - S-1 = (z' - r 1) (;(z', z)

where (;(z', z) is analytic and nonzero near the unit circle. We have

qJ(r!, z) = (d8Idz')lz ~z-l •

The result is that we may write 1m as
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1m= f dz' £(z', z)(z' - r 1)-1 znz'n(p(l{J(8(z'») - pet»~
Iz' I

= J dz' (£(z', z) - £(z-!, z»(z' - Z-1)~1 znz'n(p( l{J(8(z'») - pet»~
Iz'I~1

+ £(z-!, z) J dz' znz'n(z' - Z-1)-1 (p( l{J(8(z'») - p(t». (A2.6)
1z'1~1

Here, £(z', z) is analytic, with uniformly bounded derivative for z' near
I z' I = 1, and

£(z-!, z) = (7Ti)-1.

The assumed smoothness of pet) implies that the first term in (A2.6) is the
Fourier coefficient of a function with modulus of continuity w(o) < const
(In 0)-1-\ so that [18] this term is bounded by const(In m)-1-.I. The contribu­
tion from the remainder of S has a similar bound. Widom shows that the
second term may be written as Rm(Z-1), where

"
Rm(z) = I rkak'

k=m+1

ak = -~ i dz' z'k+lA(z'),
2m J'z'i~2

with

A(z) = -.l; i dz' p(~(e(z'») .
m JIz'I~1 z - Z

Thus Rm(z) is the remainder after m terms of the function A(z), analytic in
I z I > 1, with modulus of continuity < const(ln 0)-1-.1 on I z I = 1. It
follows immediately [19] that R m is uniformly O((ln m)-.I), but this is not
adequate for our requirements.

To construct the approximating polynomial of degree m, Pmet), we take a
linear combination of polynomials Qit), k E 2:, k ~ m, If [mI2] is the greatest
integer not greater than m12, let k 1 , ... , k" be those members of 2: satisfying

[mI2] ~:;;k1 <k2 < ... <m
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so that, from Lemma 4.9, k, 1- k, I. Let us define II, by

1\ (k, 1 k,)/(m- [m/2J)

where k,. 1 is taken to be m. We also sct

1\2 [11I/2]
III [m /2]

Thus

2..... I'.

We set

o A, 2//11I. I ..... I'.

P,,,(t) L I\Qi.)I) .
.. I

From that part of K,,, discussed above. it follows that

where

P,,,( t) p(t) I AiR;):: I)
I

l~ I\h,
I

other terms (;\2.7)

so that

hi const(ln k,) 1

I

2~ ,\,h .. 1 const(!n m) I

1

The first term of (A2.7) is little different from the de la Vallee Poussin
method of summing the Fourier series for A(:: 1). Indeed, we may write.
using the definition of D 2",(f, x) given by Feinerman and Newman [20].

where

I i\,R i.):: I)
;-""'1

It, 21/171.

L ILl',::
1",21

Since aj is the Fourier coefficient of a function with moclulus of continuity
<canst(ln 8)-1 '1. we havc [18]

ii, const(lnj) I
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and the second term of (A2.8) satisfies

I f fl-Pjr j I< const(ln 111)-1-,.
j~[m/2]
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Theorem I of Feinerman and Newman [20] gives the same bound on the
first term of (A2.8).

The proof is completed by observing that the remaining parts of Kill may
be treated in the same way.
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