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We study the convergence behavior of the diagonal sequence of the Padé table
associated with a function with branch points. Given a set of even number, 2/,
of the branch points, a unique set S is constructed which consists of a number of
analytic Jordan arcs ending at the branch points. We assume that these arcs are
nonintersecting. Let o(¢) be a complex, never vanishing function defined on S,
satisfying a Lipschitz type smoothness condition there, and let X(r) be the
monic polynomial of degree 2/ with zeros at the branch points. We construct
orthogonal polynomials with respect to the weight function X;_‘“"?’(/) o(t) and
study their asymptotic behavior. The orthogonal polynomials are defined without
complex conjugation and the domain of integration is S. Some properties of these
polynomials yield convergence in capacity of the diagonal sequence of Padé
approximants to f(t) == [sdt’ XTBD()e(t’Xt’ — 1)~ in any closed, bounded
domain of the complex plain cut along S.

1. INTRODUCTION

The aim of this paper is to gain some understanding of the convergence
behavior of diagonal Padé approximants (approximants of the continued
fraction) to a function with branch points. We treat functions which can be
written in the form

)= [ dr" X 0@ o)t — 1) (1.1)

The set S consists of a number of analytic Jordan arcs ending at the given
distinct finite points d;, i = 1,..., 2/, in the complex plane. For a given
choice of {d,}, S is given uniquely by a prescription described in Section 2.
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2 NUTTALL AND SINGH

The weight function o, defined on S, is constrained to obey smoothness
Condition 6.3. This allows, for instance, ¢ to be an entire function. The
polynomial X is

21
Xty= [ —dy (1.2)
i1

and X %* denotes the value of X' on a particular side of §.
The function f(7) has an expansion about the point at oc

fay -y 1 ‘ dr X By o)t (1.3)
P! e
From the coeflicients in this expansion may be found the [u/n] Frobenius
Padé approximant to f.

DermNiTION 1.1, The [n/n] Frobenius Padé approximant to fis
[in] = V()W (t 1) (1.4)

where V,(t), W,(t) are polynomials in ¢ of degree no higher than ». which
satisfy

iy w,e Yy - VY= O @) as r--> L. i1.5)

It is known [1] that the Frobenius Padé approximant always exists and is
unique, although V', . W, may not be unique.

Our main result is Theorem 7.5 where it is shown that [n/n] converges in
capacity to fin any closed bounded region of the complex plane not inter-
secting S. The proof of this theorem is based on the connection between the
Padé approximant [#2/n] and the orthogonal polynomial p,(7). The proof given
does not apply to the special case in which S does not consist of / noninter-
secting analytic arcs.

DerINITION 1.2, An orthogonal polynomial of order i, p,(1). is 4 poly-
nomial of degree =in satisfying the relations
.fqdr X2y ott) thp (1) - 0. k= O....n (1.6)

There is always at least one such polynomial not identically zero.

We shall show below that we may choose W, (t=') — t~"p,.(t), and that the
convergence of the sequence [#/n] follows from a knowledge of the behavior
of p,(tyasn— cc.

The determination of the asymptotic behavior of p,(r) torms the bulk of the
paper. We use a generalization of the method described by Szegd [2]. We
construct an approximation to ¢ which is the inverse of a polvnomial, and.
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for large enough n, are able to find the orthogonal polynomials exactly for
the approximate weight function. The required p,, is shown to be the solution
of an integral equation which can be solved by iteration for large #.

To find orthogonal polynomials for the approximate weight function, we
must solve the Jacobi inversion problem for the Riemann surface # cor-
responding to y* = X(t), which may be thought of as two sheets joined at S.
This leads, for each n, to a set of points «;, i = 1,...,/ — [, on #. At Jeast
for an infinite subsequence of integers », with consecutive members separated
by no more than /, the polynomial p,(¢) has, for large s, zeros near to those
«; that lie on the first sheet of #. The other zeros of p,, are near S.

The restriction of the path of integration in (1.1) that joins the points {d;}
might appear to be rather severe. However, in the case of weight functions o
with some region of analyticity, this is not the case. For instance, let us
consider the case of ¢ entire. Then it is clear that p,(¢) and [n/n] are unchanged
if S is distorted in any way that keeps its ends fixed and does not let S reach
oo. From the Padé approximants or the orthogonal polynomials we cannot
tell which choice of integration path was used in their definition, but, at least
for the subsequence, the particular set S is chosen as that approached by all
but at most (/ — 1) of the poles of [n/n] (the zeros of p,(t)) as n — oc.

This sort of behavior is to be found in the work of Dumas [3], who found
explicitly, in terms of elliptic functions, the diagonal Padé approximants to a
function involving the square root of a quartic polynomial, The material in
Section 5 generalizes this and could be used to obtain his results in more
transparent fashion. The same goes for the work of Achyeser [4], which is
related to a special case of Dumas’ results.

For [ == 1 the results of this paper have been obtained previously [5], and,
for some functions o satisfying condition (6.3), they are implied by the work
of Baxter [6]. For [ > 1, the results have been derived earlier for a particular
choice of ¢ and a restricted choice of {d;} [7].

In Section 2 we introduce the set S and give some of its properties. In some
special cases it has been shown [7] that S may be characterized as the unique
set of minimum capacity amongst all sets whose connected components each
contain an even number of the points d; . We expect that this holds in general,
but, since this property is not needed for the present work, we have not
investigated the question further.

Section 3 gives some properties of orthogonal polynomials (according to
our definition) which mirror the properties of the Padé table. These results
apply to more general weight functions than those considered here.

The solution of the Jacobi inversion problem and some of its properties
needed in the sequel form Section 4. These results allow us to put an upper
bound to the length of the intercept of a block of the Padé table with the
principal diagonal.

In Section 5, we construct the orthogonal polynomials of sufficiently high
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order. for the case when a(7) is the inverse of a polynonial, in terms of &
function meromorphic on #. including amongst its zeros the points that
came from the solution of the Jacobi problem. An explicit form of this
function is given, which is needed in the discussion of convergence.

The derivation of the integral equation for p, in Section 6 is modeled en
that of Szegd [2], but the estimates required are more involved. An important
result is Eemma 6.7 which permits us to relate the asymptotic behavior of p
to the Green's function for .S with pole at . The method uses a polyvnomiul
approximating o '(7) on S. and the proof of the existence of a suitabic
polynomial is given in Appendix 2. If we were prepared to strengthen require-
ment (i1) of Condition 6.3 to apply to the whole of 8, this demonstration would
be much simpler.

Finallv. in Section 7 the convergence proof for Padé approximants 1s given.
This 1» complicated by the fact that we have information on p, (1) for a
subsequence of the integers 7. but the generalization of the recurrence relition
between orthogonal polynomials s used to fill in the gaps.

20 Tk Sk N

In this section we define the set S in the complex plane and describe sonw
ol its properties. We begin with the Riemann surface # of 1 as a function ot ¢
where 17 X(¢). This consists of two copies of the complex planc. We shall
call the points at o on these two sheets =, and ¥, . Near %, . we assume
X2~

The properties of Abelian (hyperelliptic) differentials and integruis
connected with .# will be required in the sequel. An excellent discussion i~
given by Siegel [8]. A basis for the differentials of the first kind 15 v, . where

dw, ot VX e 1A I /. (2.0

Siegel shows that there cxists a unique differential of the third kind ¢/ wihich
1s regular apart from simple poles at », . 2, with residues 1 and 1. and
which has all its periods pure imaginary. In terms of £ we define on # the
multivalued hyperelliptic integral of the third kind &ir) by

Plr) - ’ dl. (22

Leatva 2000 For any path from d, to d, that avoids v
Re o(d) - 0, T P

Proof.  We assume 7 1 for @(dp) 0. Suppose that Yir) is o polyvio-
mial o degree /1. with coefficient of v/ " unitv. Then Y'Y 1= drica differen-
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tial of the third kind which is regular apart from simple poles at oo, , oo, with
residues 1 and —1. It follows [8] that there exist unique complex constants
By, k =1,.., 1 — 1, such that

-1

YX-9 dt — dE =) By dwy.

k=1
Using (2.1) it follows that there exists a unique degree (/ — 1) polynomial
Z(1), coefficient of ¢! unity, such that

dE = ZX-1 df. (2.3)

Now a period of dF is defined as the integral of dE round any closed curve
on #. A path in the complex plane from d, to a point near d;, , a small circle
round d,, , and the same path back to d, is such a curve. The function X—%/?
has opposite signs at corresponding points on did, and did, . If we let the
radius of the small circle approach zero we see that the period corresponding
to this path is

Ili
2 f Z(t) X~02(t) dt
iy
but we know this is pure imaginary. |

Lemma 2.2, If Re §(t) = 0 for any given path from d, to a point in the
complex plane, then Re ¢(t) = 0 for all paths from d, to t.

Proof. This follows because the periods of dF are pure imaginary. [

DerNITION 2.3, The set S in the complex plane is
S = {tr: Re ¢(t) = 0}.

We have seen that it does not matter which path is used in evaluating ¢(¢) in
this definition. Our arguments have shown that S is uniquely determined by
the points d; .

Next we give some properties of S. We suppose

-1

Z) =[]t — ).

i=1

LEMMA 2.4. (i) S is the union of a finite number of finite analytic Jordan
arcs, whose endpoints are chosen from the points d; , ¢; .

(it) Each point d; is the end of one arc and each point c; in S of multi-
plicity (¢ — 1) is the end of 2q arcs, except that, if ¢; = d; , the number of arcs
that end at that point is 2qg — 1.
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(i) The complement S" of S is connected.
(iv) Re ¢ is single-valued in S’.

Proof. (i) If tyis a point where Re ¢(z,) == 0, ¢ is analytic, and ¢'(+,)
0, then the equation ¢(z) = z in a neighborhood of 7, may be inverted [9] to
read
t == F(z)

with F analytic in a corresponding neighborhood. This shows that the locus
Re z = 0 is part of an analytic Jordan arc near to ¢, in the #-plane. The only
other points on S are ¢; and those ¢, satisfying Re ¢(c;) - - 0, and these points
are the only points where the arcs can end.

{(ii) Suppose, for a particular value of i, that we have Re ¢(¢;) - 0.
Since
ddidt = ZX L

we have d/dt == O at+ - ¢, . and thus near ¢, (assuming ¢; - d; . any )
Blr) - Bley) - Alr— iy 40

This shows that the locus Re () = 0 consists, in the neighborhoad ot ¢, .
of 2¢ analytic Jordan arcs ending at ¢; [9]. In a similar way, by expanding &

>

in a power series in (7 - - d;)"% we may prove the rest of the statement.

(iii) Suppose that S, the complement of .S, were not connected. Since
&~ =~Intast—-> o, wesee that §” extends to < in all directions. Thus §°
must contain a bounded domain whose boundary consists of the union of a
finite number of Jordan arcs on which Re ¢ - - (0. Since this domain cannot
contain a singularity of ¢ as an interior point, we can define in this domain
single-valued analytic function ¢, whose real part. by Lemma 2.2, is zero on
the boundary. This is a contradiction, since Re ¢ is not constant in the
domain [10].

(iv) Part (ii) shows that each connected component of § must contain
an even number of points «,. The change in ¢ as we go round a closed
contour in S’ enclosing one or more components of S is a period of dE and
the result follows. §

The 2¢ arcs ending at ¢, may be regarded as making up ¢ analylic arcs
ending elsewhere, and hence the description of S as a number of possibly
intersecting arcs with endpoints {d;} is justified.

The function Re &(¢) is harmonic and single-valued in §", is zero on S and
behaves at o like In ' 7| - const. It is therefore [11] the unique Green's
function with pole at oo for S.

From now on we shall assume that # is divided into two sheets by §. The
function X2 is single-valued in S”. For later use we arbitrarily assign a dirce-
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tion to each arc of S. We denote by -+ that side of S which is on the left as
we move along the arc, and by — the other side.

If Fis a function defined on %, we shall take F(z,) to mean F evaluated at ¢
on sheet /. Where not specified, F(z) will mean F(2,). For ¢, €S, F.(#,) will
mean the limit of F(z,) as t approaches S from the + side. In the case of
X172 we shall abbreviate X7V2(1) by X7V2().

3. ORTHOGONAL POLYNOMIALS AND PADE APPROXIMANTS

In Section 7 we shall need some general results, assembled below, on
orthogonal polynomials and Padé approximants. The precise form of all the
results is not available elsewhere, but their content is not new [I].
Here, we shall make no use of the special character of S or the smoothness
of o. In this section we shall write & for o X"/

From any orthogonal polynomial of order », we can construct the [n/n]
Padé approximant to f(¢) by the next lemma.,

LemMa 3.1, For any n =0, the [n/n] Frobenius Padé approximant to f(t)
may be written as

[nfn] = p3}(1) fs dt’ 5(t") (1) — pa(t)I" — )7 (3.1)
Proof. We show that

Wn(t-l) = twnpn(t)a 3 2)

V(i) = 170 [ i’ S put) — paOI0 = 0,

satisfy (1.5). They are both clearly polynomials in -1 of degree no higher
than n. We have

F@) Wot™) — V(™) =t fs dt’ o(t") p(t)t" — 1)7!
= —¢n-1 Ldt’&(t’)pn(t’) i @'/ (3.3)

— O(t—Zn—l)
from (1.6).
The converse of Lemma 3.1 is

LemmA 3.2. If the [n/n] Frobenius Padé approximant to f(t) can be written
in the form r'(¢)/r(t), where r, r’ are polynomials of degree p, u — 1, respectively,
u < n, then

[(drsyrir =0, k=0..,n—1. (3.4)
S
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Proof. The uniqueness of the Frobenius Padé approximant [1] shows that
we must be able to find s(¢), a polynomial in ¢, of degree ==n — u such that
the functions appearing in the definition of the Padé approximant may be
written

Wby - seYr ().
VY oste b (e

and from (1.5) we obtain

SO Y - s ey O By (3.

)
e

We have for large ¢

s(r Yoo ‘.I'\ dr' ey ey Yty

)

st de ey e !
AR

YV "1'([), dr Gy 0l
IR

R N I T e (A A3 CAR

AN
SR () fLey s e s

where s'() is a pelynomial in 7 of degree i - 1. Substituting (3.3) gives

gt Z th | dt’ Gty ey et FosTey ey - st e Y O e

[A] S

Since s1(r 1) = O(r* #). the result follows on equating powers ol ¢
kO n-—1. §

LemMma 3.3, For each n =0 there exists an irreducible ovthogonal poly-
nomial of order n. p, (1), unique up to a constant factor. Any orthogonal poly-
nomial p,(t) of order n may be written as the product of p,{t) and a polviomial
it

Proof. Suppose that p, . r, are two independent orthogonal polynomials
of order n. The uniqueness of the Frobenius Padé approximant {t]. with
Lemma 3.1. shows that there are polvnomials p'. r’ such that

Py Yy BRNGF
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Let p,(t) be that factor of p,(¢) remaining after all common factors of p’, p,
have been removed. Then (3.6) shows that p,(¢) is unique (up to a constant
factor). For any p,(f) we may write

Palt) = Ppal(t) s(t) 3.7
with s(7) a polynomial.

The fact that p,(¢) is an orthogonal polynomial follows from Lemma 3.2. |}

LevMA 3.4. (1) There exists a sequence of nonnegative integers, v,
called basic integers, O = vy <vy < vy, such that p,_is of exact degree v,
and p, == p.., n=v,,v;+ L..,v;qy — 1. For no other value of n does
ﬁﬂ = ﬁ!’i .

(i1) For integers of the form v;,v, — |, and no others, the orthogonal
polynomial is unigue up to a constant factor.

Proof. (i) Take any #, and suppose that the degree of p, is u < n. Also
suppose that

f dt 51 5, (1) = 0, k=0, 1., A— 1 (3.8)
S

with A 2> n. We assume that (3.8) does not hold for k& = A.

1t follows that p,(z) is an orthogonal polynomial for orders u, i -+ 1,..., A,
Thus it gives rise to [N/N] Padé approximants for N = p,..., A. All these Padé
approximants will have, from Lemma 3.1, the form p’/p, , with p’ the same
for each N. Since N = n is among the values considered, we know that p’,
Pn have no common factors. Thus for each N = pu...., A, the argument of
Lemma 3.3 shows that p,, is the irreducible orthogonal polynomial.

(i) This is obvious for order v,. For order n = v, — 1, let us write
m =v,_, . Then an orthogonal polynomial for order n is p,(t). Any other
independent orthogonal polynomial of order n has the form p,(¢) s(¢), with
s(t) a polynomial of exact degree ==1. Suppose that (+ — a) is a factor of s(z).
Then the argument of Lemma 3.3 shows that there exists a polynomial r(¢)
such that the [n/n] Padé approximant may be written r(t)/(p,.()(t — a)).
Lemma 3.2 shows that

[(dt () pi)t — @) tF =0, k= Tl.n— L. (3.9)
Vs
Since p,.(t) is an orthogonal polynomial of order n, we deduce from (3.9) that
f dt () p () th =0, k=1,..n
S

which contradicts the properties of basic integers discussed above. We
conclude that the orthogonal polynomial of order »; — 1 is essentially unique.
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For integers n other than those of the form v,, v, — I, (3.8) shows that
1p,, is an orthogonal polynomial of degree »n, where v; is the largest basic
integer << n. |

We now obtain a generalization of the usual recurrence relation satistied by
irreducible orthogonal polynomials.

LEMMA 3.5. Ifu < v < X are consecutive integers from the sequence v, of

the previous lemma, then a polynomial Q(t) of exact degree N v and a
constant C may be found such that
py=0p,— Cp, . 13.10)

Proof. Consider € =- Qp, - Cp,, where Q. C have the above character.
Then for any Q, C the polynomial £ of degree A will satisfy

[ dratyren =0, k- O 2
Je

The conditions

[ dea(yrh &= 0, kvl A

AIRY
constitute A — v -+~ | linear relations between the coefficients of ¢ and C,
(A — v i~ 2) unknowns. There is therefore always a nontrivial solution,
which is easily seen to be unique. The uniqueness of the orthogonal poly-
nomial of degree A proves the result. J

COROLLARY 3.6. [f p <2 v -2\ are basic integers, not necessarilv coinse-
cutive, then polynomials Q.. Q,, and D' of degree =X —v.v - .\ p.
respectively, may be found such that

) 1 R ) N

o Qut L Oy ENEE

D'’ is not identically zero.
Proof. Suppose that » is the smallest basic integer ~v. Repeated use of

(3.10) shows that

Pa Q(l)pn o Q(E]/)l g <‘;12)
where Q% is a polynomial of exact degree A -- 7, and Q" is a polynomiul of
degree <A - » — 1. Similarly, we have

Cp, - Q®p, - OWp, (3.13)

where Q% is a polynomial of degree - » oY a polvnomial of
exact degree v — u. and the constant ¢ may be zero.
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Solving (3.12) and (3.13) gives

- Q‘3)p,\ _ CQ(l)pu
P = Q(3)Q(2) - Q(I)Q(4) .

We deduce that D' = Q®Q® -— QWQOW is not identically zero from the
fact that, if it were, we would have

QWp, = CO%p,

The equation cannot hold, because the degree of the left side is greater than
the degree of the right. |

4. THE JACOBI INVERSION PROBLEM

In this section we discuss the solution of an example of the Jacobi inversion
problem. We shall need this solution and some of its properties when we
construct orthogonal polynomials.

Suppose that S has p connected components and that 4, ,..., d,, each belong
to a different component. (We assume that only one arc of S ends at d,.) Let
C = (Cy,..., C,_;) be a set of finite arcs joining d,d, , dod; -+, d,_, d,, , that
do not intersect each other or S (except at their ends). We shall need hyper-
elliptic integrals of the first kind, u,(«), defined uniquely for a point « on
either sheet of % by

uo) = | " dw, . @.1)

If « 1s on the second sheet, the path of integration in (4.1) runs from o0, to o
without crossing S or the arcs of C. If « is on the first sheet, the path of
integration does not cross the arcs C, but crosses S once near the point 4; .

We also define 2(/ — 1) arcs in the complex plane, L, , j = 1,..., 2({ — 1), s0
that L; joins the points d, , d;,, and does not intersect S except at its ends. A
set of periods of the integrals of the first kind is given by

Q=2 L. dw, (4.2)

where X—%/2 in dw, is evaluated on the first sheet.

Central to our discussion is the solution of the Jacobi inversion problem of
finding on # points «,;, i = 1,...,/ — 1, along with integers »;, j = 1,...,
2( — 1), satisfying

-1 2(1-1)

Y o) = W 4 Y Q- mug(00y), k=1,.,1—1, (4.3)
s

i=1
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for different values of integers m. n. W, for each k, 15 a sequence of complex
numbers such that
W - W, . s
T
It follows from the Jacobi inversion theorem [8] that (4.3) may ainvass be
solved, perhaps not uniquely.

An integral divisor is defined to be a set of points 5 53, -~ on 4. Let
us denote by U(B) the vector in CY"1 with components ¥, &1 5,1 and
vy vy G0 L Lol T vary independently over . {6 aries

over a domain ./ in CY- 1. Let £, denote the vector in CY-1 with components
£, . From the theory of Abelian integrals [8] we have that £ ./ ...
2(1 - 1) are linearly independent over the field of reals, and thuat any vectlor
in CY-P can be written uniquely as the sum of & vector in J and un integral
linear combination of £2;. Two vectors ¢, , ¢, in CY Y which correspond in
this way to the same vector in J are said to be congruent, and we shali write
ry =20y, Also in CYY we shall use the norm - defined by r z”}
ey AHYE We are now in a position to prove

LeMMA 4.1, For cach solution of (4.3) there exist real numbers b, &
such that

7, ~nh; T, AR FOTPN 20/ - . i4.3)

and for large cnough m
FoA W 4.6)

b; .\ are constants independent of nund m.
Proof. Equation (4.3) may be written as
201 1)
L) = W o Z 0,82, -+ nler ) 4.7}
jo=1

Since ©;. ;7 1., 2(/ — 1). are linearly independent on the ticid o reals.
and U(o)), (U(x) - W™)are vectors in CU-1_ there exist unique reai numbers
by, & 1,2/ - - 1) such that

207 1)
L(=%,) > b, 4. X)
i1
and
3(1_1)
L) |4 Z _E/”'A“!J, 1.9)

i1

¢

Substituting in (4.7) and equating the coeflictents of 12 tor each ;. wuds 1o the
relation (4.5).
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Also since U(a) € J, £§™ can be bounded by a constant independent of x.
The proof is completed by observing, further, that W™ —, ., W. |

If (4.3) has two different solutions, say «, 3, then we have

U(s) = U(B). (4.10)

Abel’s theorem {8] shows that (4.10) can hold if and only if the two integral
divisors o = (0 =" «;_y) and B = (B; - B,_,) are equivalent, i.e., « ~ f.
The following lemma determines the equivalence class of an integral divisor
in the case under consideration, the hyperelliptic Z. It uses the sheet inter-
change operator / defined by [12].

DEFINITION 4.2. We say that B = A(x) if « and B correspond to the same
point in the complex plane and X/2 has opposite signs.

Lemma 4.3. (i) Suppose the divisor o« = (x; >+ a;_) may be written as

o = 'Ylh(%) Vzh('}’z) 'Y.ih('}’j) Qgjpr °°° Oy s TES %(l - 2)
where
o; # o), [ # k, Lk=2+1,.,1—1.

Then a divisor B is equivalent to o if and only if it has the form

B = Bih(By) -+ Bh(B)) ctaiur ** oy
(i) If a ~ B and « has no paired points (see Appendix 1) then o« = B.

We feel that this result should be known, but, since we do not know where
a proof is to be found, one is given in Appendix 1.
To proceed, let us define subsets Sj;, of C¢-1 as follows.

DEerINITION 4.4, Forj<I— 1, k<l—j—1,

Sie = {5 15 == U((002) (001)* 0515041 *** %121)s Xjupiq 5oy Agg € H.

LemMa 4.5. (i) For j =1,k =0 we have that if s€S;_3,41 then s —
U(ooy) €851, and, if s € Sy, then s + U(0y) € Sy 111 -

(i) IfseSy,andseS,yy, thenseSy, k<l —1.

Proof. (1) If seS,_ ;1. then there must be «;, ;. ,..., %;_; such that
(note that U(0,) = 0)

-1
s kU(oo) + Y Ulw),

i=j+k+1
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-1
s — U(oo)) = (k — 1) U(ooy) = Y U
ETRR S |
and the first part of (i) follows (U(c0,) == 0). The second part of (i) is proved
in the same way.
(i) There must be a divisor x == (o) %, - x;,_, and another
divisor B == c0,f, -* B;_; such that

s = U(a) = U(B)

Thus « ~ B, and we conclude that either « = S or from Lemma 4.3(ii), x
contains at least two points that are images of one another under 4. In the
first case the result follows, and in the second we must have either «;., -
A(00y) or oy = h(ay,.,). The first of these alternatives gives «,.., -~ o0, and
the second means that « ~ (o0,)**1 20, x4 ** v, giving the result each
time. |}

With this we are able to prove

LEMMA 4.6. Suppose that we have a sequence of rectors s; e CHU1j - 0,
I — 1, such that
Sier 8 = Ulooy), Je 0 b 2 (4.1h

Then there is at least one j such that s; € Sy, -

Proof. Assume the contrary that s;.S;,,/ = 0,..../ - I. Since s, .5, .
Lemma 4.5(1) gives that s; €S, . Since we also are assuming that s; € 5, .
we deduce from Lemma 4.5(11) that s, €S|, . Equation (4.11) then telis us
that s, € Sy, and from the assumption we find s, € Sy, . In this manner we
deduce that 5,_,€S8,,., and s,_, € S},, implying the existence of a divisor
that is equivalent to but different from (20,)"-', which is impossible (Lemma

4.3Gi). |

Let us define for all sufficiently small € - 0, a set N, C # near to oo, by
Ny == {a : «is on the first sheet of # and « . < el

In the same way we define N, near o0, . We introduce a set S5, C C7 1 as
follows.

DEFINITION 4.7. S, = {s:s = Ulx), x = x -y 0 ;eENS T L)
a; €NS, T =7j ' Ly j - k.

LEMMA 4.8.  There exists a 8,,(€) such that, if s = S5, then dist(s. S);)
d(€), and 8;,(€) = 0.
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Proof. There is an s’ € Sy, such that s" = U((005) (901)* oty p41 *** 0_1)
where the «; are those that appear in Definition 4.7 and

s—5'= 3 (U) — Ulwd) + Y (Uw) — Uleor)

g==j+1
and the result follows from the continuity of U(x;) on #Z. |}

By symmetry, we have 8,4(¢) = 8y (€).

Now we are ready to consider the solution of (4.6), which we denote by
a™", Remember that this may not be unique. The result at which most of this
section has been aimed is

Lemma 4.9, (i) It is possible to find my and € > O such that for all m > m, ,
there is at least one value of k from amongst m,..., m + 1 — 1, for which all
solutions of (4.6) satisfy the condition

ofek e N e and okl ¢ N e i=1l,.,l—1.
(il) The solutions o**, o**+1 of (i) are unique for each k found.

Proof. (1) We suppose that the result is not true. This means that there is
an infinite sequence of values of m (depending on €) for which, no matter how
small ¢, for all k = m,..., m + I — 1, there is at least one solution satisfying
at least one of af** € N,¢, o'*+* € N,<. This means that at least one of U(a*¥) €
Sio > U(e®*¥1) € S5, holds. We can therefore find an infinite sequence of
values of m and a function e(m) -— 0 as m — oo, such that at least one of

Uk e Sm, U@+ e SSm, k= m,m 41— 1. (4.12)

Since U(x) € J, there must be a subsequence of this sequence, which we still
denote by m, and a fixed vector s, € C!'~1 such that either | U(e™™) — 54 | = 0
or | U(ammt1) — 5| — 0 as m — 0. Suppose that the first alternative holds.
The argument is similar in the second case.

From (4.7) we have

U(amtemtd) — J(am™) = Wmtt — W™ 1 jU(00,).

Thus for each j = 0,..., I — 1, U(o™+&-m+) converges sequentially to s; where
55 = 8 + jU(00;). Now since s55™, 5™ —>pee S1 5 So1 » from (4.12) we have
that

s; €850 or Siv1 € So1 » j=0,.,1—1 (4.13)

Since ;.4 = s; + U(00,), Lemma 4.5 shows that one alternative of (4.13)
implies the other, so that both hold. But this is a contradiction (Lemma 4.6).

640/21/1-2
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(i) If the divisor «** of (i) is not unique it follows from Lemma 4.3
that «** is in an equivalence class of divisors with at least one pair + /i{x,).

Setting «; - 20, we have that ~"" € N," which contradicts the result of (i),
Similar arguments prove the uniqueness of x** . ]

5. ORTHOGONAL POLYNOMIALS TOR SPECIAL WEIGHTS

In this section we construct explicitly (at least in terms of the solution of
the Jacobi inversion problem) orthogonal polynomials for the case in which
o (1) = p,(t), where p,(7) is a polynomial of degree i == m - [/ 1 that
does not vanish on S. From this we could, using Christoffel’s formufa [13],
deal with the case in which o was a rational fraction with no poles on S, but
we do not need this for the sequel. This work is a generalization of that of
Szeg6 [14] for the unit circle and Dumas {3] for the case / == 2.

Let us suppose that the zeros of p,, are at v, .7 - 1. i. Then the Jacobi
inversion theorem tells us that there is at least one divisor ~ - v, - v, .
v; € A, satisfying, forn — m

gy P )~ (e (3.1
In the divisor on the left, we assume that r ,..., 75 are all on the second sheet
of #.

It follows [8] that there 15 a function F(¢). meromorphic on .#. unique up
to a constant factor, that has zeros at the points of the divisor on the lett and
poles at the divisor on the right. The function R(A(¢)) has the same zeros and
poles with the sheets reversed [12]. The function F(z) F(h(¢)) therefore has
zeros at «; , i), @ 1. 0 — Tand r,  h(r;), i = 1. m and poles of order
m at ooy, oo, . Thus

nt

F(1YF(It)) = P(t) p, (1) const (5.2)

where
[
Pay= T1G - v i3.3)

i1

THEOREM 5.1.  The function g,(t) - F(r,) - FO(8)) is an orthogonal
polynomial of order n for the weight o, — p,}, n " nm. where p,, is « polr-
nomial of degree m — [ + 1.

Proof.  The function g¢,(¢) is defined in the complex plane cut at S. As ;
approaches § from the - side F(#))-> F (t;) and F(h(t,))) — F (r,v. 1, = S,
Thus, on S,

gty F(r) o Fouy (5.4
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and ¢, has no discontinuity across S. Since g, is analytic everywhere except
at oo, where ¢, = O(t"), we deduce that ¢, is a polynomial of degree no
higher than ».

To check orthogonality, we compute

1= f dt X 12(1) o, () t7q,(1).
LS :

We use (5.2) to obtain on S,
(1) gult) = pul (NF.ty) + F(1)))

= P(Y(F2(1) + F2\(ty).
Thus we have

=4 [ deX-0m0) POy F (1) 00 (5.5)
r

where I is a contour enclosing S, which may be distorted to the circle at
infinity, since P(t) F-%(t,) is analytic outside S. If this is done we see that
I ==0, k < n, as required, since P(t) F(t,)) ~t " 1asr— o |

We remark that ¢, is of exact degree n unless at least one «; == 0, .

In the next section, we need to consider a sequence of p,, , and in order to
discuss convergence, we will require a more explicit formula for F. We assume
& ,..., o, are on the first sheet.

LeMMA 5.2, The function F(t) may be written on the first sheet as

-1
F(£) = exp(X12(1) (1)) T 0(x) (5.6)
=1
where
WD) = = s [ @ 0 X001

-1

; @t — o) — ¥ In(t" — o) + 2n — v) In(t" — dl)i

{=p 41

- xfﬂ/m(zl)é Tl — x) (0 — ) In(r — dl)%
L1

2(1--1)

— Y | dr = oy, (5.7)
j—1

VL

Here, o;, i=1,..,/— 1, and n;, j = 1,..., 2({ — 1) are chosen to satisfy
(4.3) with

W — —(1/im) [S dt X-UD(t) t1n 0,,(1). (5.8)

We have used the continuous function 6(x) which satisfies 0(x) = x~1/2 if
ja] > 1.
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In the integral, In(z" — «,) is to be made single-valued by placing a cut

from «; to oo that does not cross S or C.

If any «; should be at infinity, the appropriate limit must be taken. Similarly
for «; € S but not at an endpoint, the limit as ~, — S from a side determined

by the location of «; on # must be taken.

Proof. From its form F(r) of (5.6) is analytic and single-valued in .S cut
along the arcs L; . Plemelj’s formula [15] shows that F does not change as we
cross L;, and so F is analytic and single-valued in S”. If 1 € § we find. using

Plemelj’s formula, that
{1
FA)F ) = ] 8(x) Pyl
i1

For large ¢ the integrals in (5.7) have an expansion

S a
JAEN

(5.9}

(5.10)

v,

where
a, = (1/27i) ’ dr’ X () ln a Z In(t" -~ «))
i1
YoIn(h ) - 2An ) In(e z/]):
[ |
200 1) .
S| odex ey
i VL
If ~ 1s a point not on S, we have
[ X @y ey L X By e g
DY e
where I'is a contour surrounding S but not including a. By distorting /™ 1o
oc except for sections from oo to x and a to =, we find, for | -k /.
[t X0y i nge ) | de X ey
Js 2,
If « €S, the same result holds on taking a limit.
Using this formula, we obtain
v = (1/270) 'ﬁ de XL - no (1)
Jg
v \ Al N ’
-3 Z] '-’, dt X-UB() ) —ZJ, de X ) e
[ iy 21
1y ‘ de X-0D0 s Ve | de X0 e 3

T T
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Now X-0/2(1;) = — X—1/2(z,), so that

o dy
J’ dt X-9()y 1 — 2 f dt X-/2(1) t+-1
d = o
— f Y ar X-WB(F) g1 Yar X0y o1 1 f dt X-0(t) g+-1
@y dy 0y

= up(x;)

where «; 1s to be placed on the first sheet of #. Thus, with «; assigned to the
sheets of Z as above,

-1
ap = (1/27i) L dt X70() 1 In o, (1) — 3 Y u(w)
i=1

2(1-1)

d
‘F”fldwk-F% Y M8, k <l
g j=1

and this is zero from (4.3).
We deduce that, as # — o0, the contribution to F from the integral terms
in (5.7) is bounded. The remaining factor in Fis

(t —dy" ] (¢ — o) const
=1

so that F(t) = O(t") as t — 0.

Thus the function F(z) has zeros at «, ,..., «, and an nth order pole at oo.
We define what we shall show to be its continuation to the second sheet of 2
by

-1
H(t) = [] 6%a;) P(1) prlt) F(0). (5.11)
i=1
This function is analytic and single-valued in §’, with zeros at r, ..., rz and
%47 5oy Oy, , and a zero of order (n — m) at co. Equation (5.9) shows that
F(h(t)) = H(t) provides the required continuation. On Z%, F(t) of (5.6) is
meromorphic with poles and zeros as required and is therefore the function
introduced at the beginning of the section.
The argument is easily modified if an «; should be on S or at co. ||

6. ORTHOGONAL POLYNOMIALS FOR GENERAL WEIGHTS

In this section we come to the problem of finding orthogonal polynomials
p(t) for a weight function o(z) satisfying Condition 6.3 below. Our procedure
follows that of Szegd [2] for the case of the unit circle. An integral equation
satisfied by p,(¢) is derived. The complication arises that, even for large n,
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the mtegral equation may not always be solved by iteration. Howerver. we
show that solution is possible for an infinite sequence of integers . with
consecutive integers differing by no more than a constant, and information
about the remaining polynomials is derived in Section 7 using the results of
Section 3.

We shall use the polynomials of the previous section for u sequence of
weight functions o,,(¢). specitied in Condition 6.3, thal approximate (7).
The polvnomials of degree m. m - [, associated with weight «_7) we shall
call g(r). ¢'(r). The correspondin0 functions £. P will be denoted by F. 7 and
PP SnmLuIv we shall use v . v,/ for 77w F

With » defined from the wethl o, (1) ol Condition 6.3, we denote by
2 the \cquuuc of integers given by Lemma 4.9

Lianin 610 Form = X0 provided m is large ciougl we hare

o 10 o B B A S VAN E o B VAN VI N P A VA S B T SO T

RN

where
Koty Agliygie’y - gty g’y (6.2)
and i, i « constani.

Proof.  The function K(z. 1"/ Y Vs a polynomial in 70 of degree i
and the coefficient of ¢ is gg(/). where ¢ + 0 is the coeflicient of 7 Yin
¢'(t). From the orthogonality of p,, . we find

| "X O oy Koy 0 T )
NS
Jaluey | de X Ry et e 0 {6.3)
sN

We shall show later that the integral on the right-hand side of (6.3) cunnot be
zero for large enough m. We therefore normalize p,, so that the r.hs of
6.3)is - g(r).
For 7 ¢ S, we have
[t Ny (YR e ) T p (1)
B

-4 | dt" X Mg PN E e gty PUOYE T
S ) Yy

where 77is a closed contour including S but not ¢. We have used an argument
similar to that of Theorem 5.1. No contribution results if 77 is distorted to
o, but to compensate we must add the residue at 7° 7. This gives (6.1) with

i X IBOPUOF gy Pyt Tty gy
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Using (5.2) and the definition of ¢, we obtain
o, = imX=UA(L) o MF(R(O)E" (1) -+ F'(h(1)))
— F'(h())(F(1) + F(h(1))))
= imX=(t) p  MO(F(h(r)) F'(t) — F'(h(1)) F(1)). (6.4)

This is a function meromorphic on £, invariant under ¢ — h(¢), and bounded
at co. The only such function is a constant.

Before proceeding, we shall obtain some information on p,, , the constant
of (6.4).
LemMMA 6.2. For meZ, we can find py >0 such that {p, | > po, if
m > my.
Proof. We begin with the formula (6.4) and use (5.9) to obtain
P = ITX "W NQP(E) F'(1) FH(t) — Q'P'(t) F(1) F'-(1))

where

-1
Q =[] 6*(x).
i1

We shall evaluate p,, by taking # — o0, . The second term vanishes, and the
first gives

1
P = i explay — ay) H 0(;) O(ox,")

i=1

where a, , a,’ are given by (5.10) with n = m, m + 1.

Because of the convergence of o, to o, we see that for large m, ¢," — a,
can be large only if some «;, ;" are large, since the explicit # dependence
cancels, and 5;" -- »; cannot be large from (4.5).

Thus we consider the form for large o of

(1/27i) f dr' X0y 1 In(r’ — )
S
~ (In a)(2mi)~ ‘[S dt’ X-0P(t') 11 4 O(a?) ~ —}In & + O(a),

So from (5.6) we deduce

v’ -1
po =1 A+ 1’ D [T A+ T D?p

i=v+1



22 NUTTALL AND SINGH

where w, p~' are bounded independent of m. The result follows from
Lemma 4.9. |

To avoid excessive complication in the subsequent analysis, we shall
assume from now on that S consists of / disconnected components, so that
no point ¢; lies on S and only one arc ends at each point 4; . This might be
regarded as the general case, and certainly the assumption holds when all
points d; are collinear.

Suppose that we associate with each end point d;, i = 1,..., 2/, a set of four
points on S, a”, ai?’, al?’, ai’ not at d; . As we travel along S from d; , the four
points are reached in the order given, and all are passed before we reach any
of the points associated with the other end. Let us call the analytic Jordan arcs
formed by following S from d; to the four points, 41”, A, 4%, 4.

From the form of ¢(¢) given by (2.3), it is clear that, near ¢ = d;, $(¢) is an
analytic function of y = (¢ — d})V/2. The variable » is suitable for use as a
local variable on # near the point d; . It follows, since Z(d;) + 0, that there
is a neighborhood Z of 0 in the y-plane, in which ¢, X~/ are analytic and
dg/dy + 0. The curve S -= {1 : Re ¢(3* - dy) - 0} is an analytic Jordan arc
in the neighborhood of y — 0, through which it passes. If a point ¢, on one
side of § corresponds to y, then 7._ corresponds to -,

Now suppose that &'V, at", ai", ai"’ are chosen so close to d, that they lie
in the domain 2, and similarly for the other ends of S. Each of the four points
is mapped into two points in the y-plane, —b{, —-bP, —bHP, bV, bV,
b, BYL, Y 1ying on S in the order given. Let us denote an arc contained in
S, having end points a, b, by S(a, b). We may suppose that the -~ side of A}
is mapped into S (0, #'’) and the - - side into 5(0, —&).

We assume that the weight function o(¢) satisfies

ConDITION 6.3, Let o(¢) be a complex function defined on S. Then
(i) there exist real A, B such that 4 >~ "o(t)| > B> 0,7€S;
(i) fort, t'eS — Z?ilA‘li), there exist constants L, A > 0 such that
Co(t)y = o)yt < L(n |t — )TN (6.5)
(i) for s t'e AP
la(t)y ™t — o) < L(nly — ppHi (6.6)
and similarly at the other ends.
We show in Appendix 2 that these conditions imply a fourth.

(iv) There is a polynomial p,(f) = o,}(z) of degree m -~ + | such
that for large m

sup {o(r) o, (1) - const{lnm) 1
cs
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From now on, we use the sequence of weight functions o, given in Condi-
tion 6.3.

Several lemmas needed later now follow.
LEMMA 6.4. Let us define in S’

xm(t)—-exp( (l) J di' (1" — 1)1 X-0/2(¢") In Um(t')) 6.7)

and x(t) in a corresponding way. Then, for t € S, the limits y (t), x_(t) exist and

Xmlt) = x(¢) uniformly as m— oo, for t€ 8" and x,+(t) — x.(t), uniformly,
tes.

Proof. The proof is analogous to that of Szegd’s [16]. Let us suppose
that we wish to study the limit as ¢ approaches a point 7, € A" on the + side
of S. Then we consider

1= x| @ = 1 LX) In o(r) (6.8)
A31

for the contribution to the integral in (6.7) from S — A" obviously has a
limit as ¢ — 1, . Define s(y) = In o(t) and X(y) = X(¢)(t — dy)~L. Then I can
be written

I= 2X1/2(y)yL ( dy’ (y'2 — yB) L XV2(y) s(y")
(0,by )

and if we set s(—y) = s(y), we have

1=X'1%(y) dy' (¥ — y) XVE(y) s(5'). (6.9)
8= p{1)

Since from (6.6) s(y) satisfies, for y, y" € S(—5", biV),

ls(v) — s(v)| < const(in |y — y" )1~ (6.10)

a standard argument shows that the limit of 7 exists at ¢ — #,,.

To discuss convergence for large m, still with #, € A", we again need to
study only

=X [ dr (¢ — )7 X0 In o, (1)
(1) .
" 6.11)
— Xy () R 5,0

3§V, 0{1)

with 5,,(¥) = su(—p) = In 6,,(¢).
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Following Szego, we split (%", ") into an interval £ containing those
points with distance from y, no greater than m=(In m) ", and its complement
E'. For large enough m, £ C §( b, 6"). We have

X oy, D | (/_\-’(,1-’ N SR U K (R BRI G
Vi

{500 s() i dvCrT PN TR

o (6.1

i‘ AT B U B LT O [E SN B Y
(sC") -~ 5]

Now S(—6", M) is an analytic Jordan arc, and p,. (1% - d,) is 2 polynomial
in v of degree 2m. A generalization of the extension of Bernstein’s theorem
proved by Widom [17] shows that, for y e S(- AU, b,

dp,,idv - constm sup Po (6.13)
NI R

It follows that
S s,y swconstar vy, »r"i(;— I

Szegd's argument now applies to (6.12) to give the required result. ,

If 1 is near another end, the argument is similar. while if 7€ § }:"l AL
a analogous argument applies. without the need for a transformation of
variable. |}

Let us define the function H{x. t), 7 on the first shcet:of # by

Hi(x 1)~ 0(x)exp ),,;,,,,ﬂ ‘ dt’(rr oy VO Ea)RInGge d)
.

In(r’ )] in(s ) In(r (/])( v on first sheet.
(6.14)
iz .
Hy(x, 1) H(x)exp :~——([,’) ‘ de(t’ 0yt XY ) Ine’ - \)(
ks NN

v on second sheet.

In the integrals, the logarithms are determined as in Lemma 5.2.

Lemma 6.5, (1) The function H(x,t) is uniformly bounded for 1+ 5.
independent of x. There exists a neighborhood 7" of v - 0. %" C & such thar
for v e UL H(x, v* ~ dy) is an analyvtic function of v with derivative wniformly
bounded, independent of ~. and similarly near the other ends of S.
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(iiy For tin a closed bounded domain of S, H(w, t) is a continuous function
of o on the dissected R, using the topology provided by the local coordinate.
(The dissection of X referred to makes % simply connected in such a way that
the path from o0, to o is that used in the definition of u,(x).)

Proof. (i) For teS — ZZI AP, the boundedness follows immediately,
if necessary with the help of a contour distortion.

Suppose then that y = (t — d))V? € 2. In a way analogous to that in
which we obtained (5.10) we see, for a on the first sheet, that

A%WJ%:ﬂ@ﬂpEX“mﬂfmww-n4Xﬂmmd

dy .
wzf m%ﬂ~04X4WWQ)4§MU—u%.(6B)

For &’ choose a neighborhood of y = 0 with boundary a positive distance
from that of &. Let 8 €8’ be such that y, = (8 — d)'2€Z — %’ and y, is
at a positive distance from Z’.

If « is not near any end of § the contribution in (6.15) from [, obviously
satisfies the statement of the lemma. Suppose then that z = (« — 4;)*/* and
zeZ. Wewrite [5 = [ + [&, and need only consider [; .

We have, using t" —= y'? + d, ,

Mmmogm%f;odx4mmq+;mu-@

— Xl/z(y) ¥ l’” dy' (y/z _ y2)—1 X~(1/2)(y/) - 12 ]1’1()'2 . Z‘_’)

Yo

=Xy [ dy (32— 7 (R0(y) = X02(y)

v,
] ’ (6.16)
v [T d (= ) G - 2,

Yy

The analyticity of X-1/2(y’) in y’? shows that the first term in (6.16) is
analytic in v, while the remaining terms give

In(y — 2) 4 ¥(In(yy + ) — In(yo — y)) + const.

The treatment when « is near another end of S is similar.
The term fil may be treated in the same way, but now we have

aq
XV3(ay) [ de? (1 — 1)1 X-079(1) = (analytic in y).
B

The case of large « is treated as in Lemma 6.2, and the discussion when «
is on the second sheet is similar to the above.
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(i) The continuity is immediate except when « changes sheets, which
it can only do by crossing the arc of S ending at d; . We must therefore show
that

Hl(‘fx—:— 21) = Hyla. ;1)

for « on the arc of .S ending at ¢, .
Now we see that

A

. Ly
| de e Xy = 2 | - X))

v
Y Wy

J AU ) Xy J di’ (¢ — 1y VX Dy
ay

o*

I

L atly
s [ dr’ (17— 1) VX — ' dt' (1 1) VXA

My

= [T e,
Using (6.15) and the equivalent formula for Hy(«, t),

Hya, t) = 6(x) exp)"éxl‘z(rl)f\ dr' (t" — )y X-2() - din “’:~

the result follows. |

LEMMA 6.6.  There is a neighborhood of S(— b3, b{") in which y,,(0* - dy)
is an analytic function of y. For y € S(—bP, b))

| Ayl ¥ dy) ' 4
,‘ dy

const m In

Jor large enough m, where the constant is independent of m.

Proof.  If we substitute o,(r) = p, [];-; (+ — r;) into (6.7) we find

z

ni

S 3 .
VX (71) In Po - 2 ln(l . ’./) : .
- i=1 .

Xm([) — exp (——27‘7_7*‘ \J; (/t’(t/ o ,);l /\/;‘L(l":!)(r’)

Lemma 6.5, along with a similar result for the In p, term, gives the analyticity.

To discuss the derivative, we follow the approach used in Lemma 6.4, and
the problem quickly reduces to obtaining a bound for the derivative of /,, of
(6.11). This means that we need a bound for the derivative of

f dv () LX Ry s, (). (6.17)

RIEARRAL
In this expression. we are Lo take the limit as y approaches S{ AL b1
from one side. The function s,(1') is analyvtic in a neighborhood of 5t A\,
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bM), so that (6.17) is analytic in y for y in a neighborhood of S(—b5", b1).
We shall differentiate (6.17) and then take the limit as y — S(—b%, b{").
Differentiating with respect to y and then integrating by parts gives from
(6.17)
d(X (1/2)
dy’

b(l)

ay (5 = 30 (sl A=) Xy )

fS(fbél),bﬂl))

= =y (6.18)

The arguments of Lemma 6.4 give the required bound except for the term

f dy’ (y' — y)y L XDy ) ds,/dy’). (6.19)
S(-b§0,p§1)
We see from (6.13) that
ds,/dy << const for y € S(—b, bM). (6.20)

In the same way as in Lemma 6.4, using the generalization of Bernstein’s
theorem on (d/dy)(p,.(y* + d,)), we find

| ds,,/dy? | < const m®  for y e S(—bD, b1,
so that

dsy, _ dsp,
dy” dy

Now write (6.19) as

<constm*|y —yl, ¥, ¥ eS(—b", bM). (6.21)

f dy' (y' — )t X- WD(y') ds"’
S(ibgﬂ,bél))

dsy, f
dy I 5w

dy' (y' — )"t X-W2(y")

+f dy' (y — p) 1 X-am(y )( s —%’"—)

f dy' (' — y) Xy )( i ‘?;”)

where E ={y" : y' e S(—b, b), | ¥’ — y | < m™'} and E’ is its complement
in S(— b, B,

The limit as y — S(—b", bP) now obviously exists and the bounds (6.20)
and (6.21) give the required result. |

It is necessary to relate F(¢) to the function ¢(z) of Section 2. This is done
by the following,
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LEmMMA 6.7.  The function (1) may be written on the first sheci ax ét1)
(I)I(I )s

P b, N [ Y R e

w0 ‘
Nb, ] di (Y X Uy Inltr dn n.22)
e vL '

where ¢, is pure imaginary, and b; is defined in Lemma 4.1, In the aiocedd. the

branch of In(t" — d\) s chosen as in Lemmua 5.2.

Proof.  The function ¥{(r). given by
Yy - (limi) | dr' (-t X )
BES

is analytic and single-valued in S”. For 1 € .5, Plemelj’s formula [13] cives

Yoty — W (r)=2X 9204y In(r - d).

- 1

Thus we have

X)W )y I - d) e =X W) - Inle )

and it follows that
200 1) .
Do) - Py - V! 2(r._,)k\‘lf(r‘) Y by f de Y 9 Ba 00

/ =, T ~
g - dy)

gives a continuation of @(r) onto the second sheet of .#. If this function is
continued across a4 possibly different arc of S, the original function (7))
results.

This discussion assumes that no arc L; has been crossed during the con-
tinuation. If this should happen. --2mib;, must be added for cuch are £,
crossed. The conclusion is that @(r) is a multivalued function defined on 2.
any determination of which having on sheet 7,/ - 1. 2 the form ¢2.(/)  pure
imaginary.

As in Lemma 5.2, the coefticient of #-# in an expansion of the mtegrals in
brackets in (6.22) for large 7 is

N 200 ) .
(1/mi) ‘ dr’ X OBy Vingt - dy) Z b, ‘ drm X4 i

. l\' ; 1 n[

iy 200 1)

' dr" X9yt 4 S b8,
t |

240 )
ATH AR T S S P
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and this is zero for k <</ from (4.7). Thus, as t — oo, P(t) ~ In ¢ - const,
®D,(t) ~ —In t + const,

The methods of the previous lemmas may be used to show that @(¢) is
analytic on Z in the local variable (t — d;)!/? near ¢t = d;. It also may be
deduced that @(t) — ¢, is pure imaginary at 1 = d .

The difference between @(¢) and &(z) is a function analytic on %, having
pure imaginary periods, and the only such function is a constant [8]. The
fact that ¢(d;) = 0 completes the proof. |}

LEMMA 6.8. Suppose that r,(t) is any polynomial in t of degree m, such
that supyes | .n(t)| == 1. Define the degree m polynomial R, (t) by

R0 = it | XY o)

— o, (1) K(t, )t" — 1)1 r, (1) (6.23)
Then, if m is large enough, for m € X we have
| R,.(t)] < const(Iln m)~ (6.24)

where the constant is independent of m and r,, .

Proof. The first step is to prove that F, F’ are uniformly bounded on S.
From (5.7) and (6.22), we have

-1

F(t) = e ] H(o , 1) (1) exp
=1

2(1—-1)

—§X1/2(11) Y gjf dt' (t' — £y X*“/E)(r]’)~n¢og (6.25)

and the boundedness follows from Lemmas 4.1, 5.4, 6.4, 6.5, and the fact
that Re ¢ =0 on S.

IfreS— Y5, AP, Szegd's method applies almost directly. Since K(z, 1)
is a polynomial in ¢’ of degree m, the generalization of Bernstein’s theorem
used in Lemma 6.4 shows that, for ¢, ' € S — Yo, AP

I K(t,t")) < constm |t — 1| s,uIb) | K(t,t)). (6.26)
t’'es

The definition (6.2) of K(z, t') shows that its modulus is uniformly bounded
for ¢, t' €.S. The result (6.24) follows after splitting S into a part with points
distance <m* (In m)~* from ¢, and its complement, just as in Szegd.

Now suppose that ¢ € A, The contribution to R,(¢) from the integral over
S — A may be bounded, using (6.25), by

p(In m)~1=? const f de’ X-1m(t")
Y s—all

which satisfies (6.24).
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To treat the remainder of the integral, we shall need suitable bounds for
K(¢,1"), which is
K(t, ') = (F.(t) + FAONF(t') +~ F (1)
= (F()y - FU(ONF () -+ F_(2). (6.27)
If we write
F(t) == e®Vy,(t) g(t) (6.28)
then one part of (6.27) becomes
F)F () = FO) F )

(@, () o, ") /'y
- (Jm ‘ Xul*'(f) Xm’*([ )

e e (g ey et g ) g 1)) (6.29)

From Lemma 6.5 and a similar result for the integral over L; in (6.25) we
see that the expression in brackets in (6.29) is analytic in v’ for 1" € &, with
bounded derivative, and vanishes at 3’ - 1. Since the other factors in (6.29)
are bounded on S, we deduce for p, v’ € .

FE () F.(ty — F(()F(t) < const |y — vi.
A similar argument applies to another part of (6.27), so that we write, for
WY EeZ
FAOYF(') — F()F (1) - FF Ay - Fa)F ()

(3 e @D (D, () G 2

(}m(d: ()b )

X A1), 1) Gl 0] (6.30)
where G(y, v') is analytic in ), +" and
e?Wg(r) g'(t') — g’ (1) g(t") — (y — V) G(1, 1)

Since the left-hand side of (6.30) vanishes if 7 == ¢/, it follows that the term in
brackets on the right-hand side of (6.30) vanishes when )’ = —y. We use
Lemma 6.6 to bound the derivative of y,, with respect to »" by const m. The
other terms in the bracketed factor in (6.30) have a similar bound. We may
therefore conclude that the bracketed factor is bounded by const ' y -1 v’ | m
In m for y, y' € S(—bY, bV).

The rest of K(¢,t') may be treated as above, so that we end up with the
two bounds for y, y" e §(— ", b

FK(t, ') < constC v - v ) (6.31)

const . v v " v omlnm, (6.32)
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We now have for ¢ € 4"
[ dt X0 o) — 0,0 Ko 00 = 1) 1, ()
A‘(ll)

< const (In n7)~1—> f Ldy' ||yt — y2 | K4 ). (6.33)

50,680)

The integration contour in (6.33) is split into a part for which | y' — y | <
m™1, in which bound (6.32) is used, and its complement in S(0, b%""), where
bound (6.31) is used. The result follows immediately. |

We come now to a basic theorem.

THEOREM 6.9. Suppose that S has | components and that o(t) satisfies
Condition 6.3. Then, provided m € 2 is large enough, p,(t), the orthogonal
polynomial of order m for weight o(t), is unique and may be normalized so that

Pult) =q(1) + (In m)=" em* Oy, (1) (6.34)

where vy,,(t) is uniformly bounded in any bounded region of the complex plane.

Proof. Tt follows from Lemma 6.8 that, for large enough m, integral
equation (6.1) can be solved uniquely by iteration. There is also no solution
of the corresponding homogeneous equation so that the integral in (6.3)
cannot be zero, and p,(¢) is unique up to a constant factor.

The form (6.34) follows immediately from our previous results. |

7. CONVERGENCE OF PADE APPROXIMANTS

For the values of m in the sequence 2 used in Theorem 6.9, the convergence
in capacity of the diagonal Padé approximants to f(¢) for 7 in a closed bounded
domain not containing S follows immediately from the result of the theorem
and (5.6). For the other integers, it follows from Lemma 3.4, that only the
basic integers need be considered.

LEMMA 7.1. There exists an infinite sequence 2’ of basic integers and an
integer my > 0 with the following properties.

() If meZ,m>my, and v is the largest integer in 2 that satisfies
v < m, then p,(t) = r(t) p,(t) with some polynomial r(t) of degree <I.

(ii) The difference between two consecutive integers in 2’ does not
exceed 21.

Proof. (i) From Theorem 6.9 it follows that for each m € X, greater than
some m, , the orthogonal polynomial of order m, p,(¢) is essentially unique.

640/21/1-3
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From Lemma 3.4(ii), then, either s or (m ° 1) is a basic integer. Let 2
{v:iv >m,y,vis basic, vor v - | €2}, Since the consecutive members in X
differ by no more than /, m and v of the lemma satisfy the relationm v -7 /.
The polynomial p,(f) can now be written as asserted in the lemma and the
degree of r(t) cannot exceed /.

(iiy Follows from the fact that if », v are as in (i) thenm — » /. |
LEMMA 7.2. For each basic integer v - m, - 8l, there exist m, m~ =2
withm™* > m, im — v ' =221, and polynomials Q, Q*. D, of degree 8. such
that
(¢ L) Q) p, (1
plt) = ,QL)[J"_( ) ,g ( )/7 " () X (71)
D(t)

D(t) # 0 for some t.
Proof. The proof follows from Corollary 3.6 and Lemma 7.1. |

Let R C S’ be a closed, simply connected, bounded domain, and L, be so
chosen that they do not intersect R. This choice of I.; does not alter the
results established so far. Since Re ¢(¢) is the Green's function, it may be
shown [11] that the locii Re ¢(¢) = A for different positive A are nested so that
every point ¢t for which Re ¢(z) = A is contained within a closed curve
making up part of the locus Re ¢(r) == X’ provided that A < A",

Define M, M’ by

M - inf (Re @(¢)). M’ == sup (Re #(1))

1eR 1R
and denote by R’ the closed, bounded domain containing R given by
R ==1{r: M/10/ - Re ¢(t) = M'|.

For each basic integer v of Lemma 7.2 let F, (¢), F,, *(¢)be the functions (5.6)
corresponding to weight function p;}(¢) and values of # == m, m™, respectively.
As in (6.28) we write

o md
Fooe"xng

i

A ety "
A SN . o*
[w ¢ X8 »

We normalize p,(t) by requiring that

D(ry = [Tt — 1)
and
sup [ Q€)= - Q*)?]) = 1. (7.2

Lemva 7.3, Let n (1) QU)glry @ o0 r)yg=(t). 4 = m*  m, and
a determination of g, g* is chosen to make n,(t) single-valued in R and %,
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X e " QF,, + O*F,*). Then given p >0, for sufficiently large m, there
exists 8y(p) > 0 such that | n,(t)| > 8o(u) for all t € R — R, where R, C R and
Cap (R) < p.

Proof. First we show that for each m, 7,,(t) # 0 for some ¢ € R. If this
was not the case, then one would have that

F) Q%) (7.3)

Fﬁl*(‘t) - Q(t) '

Equation (7.3) implies the relation among divisors

Oo;mamrl P o Blh(ﬁl) Bzh(Bz) oo;lwgl (7.4)

wv{m*am*rl rmwr?n*‘um ,ylh(,yl) VJ/’I(V,) w;i CO;j
where «,, , a,* are the integral divisors to be used in (5.1) corresponding to
F, ,F,* and B;..., B:, vy ..., y; are the zeros of Q% Q in the complex
plane. We assume that all common factors of @*, Q have been removed, and
hence B; = y;, any i, j. Equation (7.4) is equivalent to

(000" ayyihlys) o yihlys) = Bih(By) -+ Bih(By) ot *(c00)4¥1 (7.5)

Since a,, , a,,* have no pairs, the only possible way for (7.5) to hold is that
i == j == 0, which implies that

(wl)é1 ®py = 0‘"1*(002)A’ (76)

This means that a,, has oo, for some of its components, which is impossible
from Lemma 4.9. Thus for each m, 7,,(t) 0 for some 7 € R.

Further, for each m, 7,(¢) is an analytic function of 7e R. Therefore
Cap {t: | n.(t)] = 0} = £ for any £ > 0 implies that 5,(t) = 0 for all r € R.
Since 7,,(t) is not identically equal to zero, given p > 0, for each m, one can
find 6,,(1) > O such that

Cap{r: | mult)| =< Bm(l")} = K-

Now, suppose that the result of the lemma were not true. Then one could
find a subsequence {k} such that 8,(u) — ;.. 0. The sequence {k} may be so
chosen that m* — m = 4 is fixed. In the following, we show that this leads
to a contradiction.

Let a, and a,* denote the set of the coefficients of the powers of ¢ ap-
pearing in Q, Q*, respectively. Consider the point P* = oyoq*aia,* € .4 C
A2 80 where #2201 is the Cartesian product of 2(/ — 1) identical
copies of #. Since the canonically dissected # is compact, and owing to
condition (7.2), a, , a,* are confined to a bounded subset of C#, .¥" can be
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chosen to be compact. Hence there is a subsequence of the values of {k],
which we still denote by {k}, such that P¥ —,_, Pec ..

The functions QO(t), Q*(t): C¥ '~ R— C are continuous on ¥ and
analytic on R. Also since &oy), &%) are bounded (Lemma 4.1), they
contain a convergent subsequence. Denoting this subsequence by {k! again.
and noticing that H(x, ) is continuous on ¢ and analytic on R, we have
from (6.25), that £,(¢), F,.*(¢): -/~ R » C map a convergent sequence in ./
into a convergent one.

Thus 7,(t) - (P t)y: ¥ R -> C, for each A. is continuous on -/ and
analytic on R. And since P* -> P, 0, (¢) —ny(t) - n(P.1). The compactness
of R. together with the continuity of »,(f) for < R, implies that the con-
vergence is uniform with respect to t € R and hence 7,(7) is analytic in R.

Further. since §,(u) —,., 0, we have that

Capir: 1) 0F 0

and hence, because of the analyticity of ny(¢), o) + Oforallr e« R.
Also since P¥ — P, a;. ., a,™ - > dy , dy™, ap o 7 - 0. gt

Or), @F(t) - Qo). Qo™ (1) and ) gm ) — gli). g™ 1),

We have used that x7'(¢) has a limit. Since Q(r). O*(t) — Qylt). On (11 5 .
;= B,y foreach j. Since {{y '} x,} is a finite set, onecanfind aset R, .7 R.
such thdl Cap(R, ) == /2 and for large enough A, {{v,;Hy " vy, ' C R

Now

1) QU g))l - e Q) e

Oy ety
N 200 1) gy 1)
’Qn(”.&n(’)'l ’”’0'( )(r([) \
nolt) U for 1o R, 7.7

where R, C Ris some set with Cap (R ,) 2. It is obvious now. that

Folt) Qn

HE tort R . (7.8)
Fuo(t) u(f v

Equation (7.8) implies the relation (7.4) among divisors. with , . .~
replaced by «, . x,* on the left and the 8, , y, replaced by 8" v * on the right.
The same argument leads to the same contradiction as in the case of (7.4). |

Lymma 7.4, The polynomial p, of (7.1) has the following properties.
(i} Given w0, there exists vy(p) such that, for eachr v - v,
pAry o constd e M ()

for all t = R except for a set of capacity -~ o, with d - sup, . D{r) .
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(ii) There is a constant independent of v such that
| pt)] < const gt®/100mM
forallteS.
Proof. (1) Using (5.11) and (5.6), it is not difficult to show that, for ¢t e R,

| F.(h(£))l < const e=™M,

Thus, for ¢ € R, we have, with (6.34)
Pult) = Fult) + O(e=™M). (7.9)
A slight change in the argument of Section 6 leads in the same way to
Pu(t) = F,*(1) + O(e~™™). (7.10)

Lemma 7.3, along with (7.1) gives the required result.

(ii)) Consider the 9/ locii 8; = {t: Re Q(t) = jM/10!},j = 1,..., 9],
which are closed, nested, surround S, and are contained in R’. Let the mini-
mum distance between the adjacent locii be £. Then, since D(¢) is of degree
<8/, there must be at least one value j, of j for which all the zeros of D are at
a distance of at least ¢ from 6,-0 . Forte qu we have, from (7.1), (7.9), and
(7.10), that

| pAE)| < const(3€)8t et9/10mn

g const e(9/10)mM

for sufficiently large m. The constant may be chosen to be independent of v
and 7. The result now follows from the maxium modulus principle.
We are now in a position to prove the main result of the paper.

THEOREM 7.5. Provided that Condition 6.3 is satisfied and that S consists
of | components, the sequence of [N/NY) Frobenius Padé approximants to f(t)
converges in capacity to f(t) as N — o0, in any closed, bounded domain R C S’.

Proof. The result for an arbitrary N will follow if it is true for the basic
integers v, and for a closed, bounded simply connected domain S'. For this,
using Lemmas 3.1 and 7.4, we have that

@O — bl < 0t [ Ve o))

< const r-1lde—1 /IO)mMSEI(#‘) I (71 1)
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where

r inlf t 0 and 1] dr oly)
1ER .
tEN N
ftis now obvious that for any i, € - 0. the right side of (7.10). by increasing
m, ie.. . may be made e, which proves the assertion. §

APPENDIN

The aim of this appendix (s to find the equivalence class ol & divisor
X Y e vy . that is, all divisors - By - B, such that 5 ~ «. For
terminology and a description of the theorems used the reader is referred to
Siegel [8].

We shall call two points v, . y, on # a pairif y,  A(y,). They correspond
to the same point in the complex plane but are on different sheets. We suppose
that + contains m pairs and /- | - 2m other unpaired points. with m
0, 1.

Now any differential of the first kind v mayr be written as

dw () A VR Yy dr

with = w degree (/' 2) polynomial. 11 v . then = must have zeros in the
complex plane at the unpaired points and also at the points corresponding to
pairsc i (/-1 2my [ 1 min all. Thus the dimension » of the
vector space of first kind differentials such that ~ dw s b 7 ]

(/- V- m) m. Suppose that ¢ 1s the dimension of the vector space of
functions of meromorphic on “# such that «' / The Riemann Roch

theorem shows that

a b1l B! i

mo .
A function ffor which ~ - fiis
S QU R,

where R, (r)1s a degree s polynomial which has its zeros at the paired points
of . and Q,(r) is any degree /m polynomial. The dimension of the vector
space of such functions is m - L. and since @ m - 1. 1t follows that every
function for which ~11 fhas this form.

It follows that 5 ~ ~ il and only if 5 v w0 LB By 5 his, ).

with 2, ... S, arbitrary.
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APPENDIX 2

In this appendix, we demonstrate that Condition 6.3(iv) follows from
Condition 6.3(ii), (iii). Given a bounded function p(¢) satisfying, with p = o,
(ii) and (ili) of Condition 6.3, we demonstrate that it is possible to find a
polynomial p,(¢) of degree m, such that, in the case when S consists of /
separate arcs,

sup | p(t) — p.na(t)l < const(In m)~1-2 (A2.1)
€S

The proof uses the orthogonal polynomials of Section 5 for weight o = 1.
We shall use the notation of Section 6. Since y,,(f) = 1, we have

F(t) = em*Mg(1).

—1
m

There is a sequence of integers, which we call X, for which u;! is uniformly

bounded.
The function K,,(¢, t’) is constructed as in (6.2)

K, (t, 1) = quft) q:n,+l(tl) = Gumaa(t) Gult')- (A2.2)

Define the degree m polynomial Q,,(t) by
0, (1) = pt [ di' X W) K (o)t = 07t oty (A23)
It follows as in Lemma 6.1 that
Q,(0) = pl) = 3t [ dt’ X 0B K (6,001 = 07 (o) = pl0). (A24)

To study this integral, we follow the method of Widom [17, Sects. 8, 11],
Let us consider the contribution to (A2.4) from S,, one component of S,
which we shall assume ends at —1, 1 (d, , d,). We shall also assume 7€ S, .
The change of variable

f=3s 57 = $(s)

may be taken to map the exterior of S, into the exterior of an analytic Jordan
curve [ in the s-plane. The curve I} passes through the points 1, —1. Each
arc of I'} joining 1, —1 corresponding to s, in such a way that points s,
s7' e I'y correspond to the same point of s, .

Equation (A2.4) may now be written

Qm(t) - P(f)
= —2p-1 fp ds" Y(s") K, (t, P(s V(" — $)(s" — s (p(h(s")) — p())
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where
2
Y(9) = 3 ($(s) — d)-u.
P )

Precisely as in Lemma 6.8, we write K,, as the sum of four terms, one of
which is, with z, 1" € 8] ,

F;(I)FE/([') - FA/(’)F (t/)
= e'”("" W“”(”)( e dt) g (t') e’ w g (1) g (1) 0“(“)
- K (say). (A2.5)

If we substitute ¢' = J(s"), the factor in brackets in (A2.5) becomes an ana-
lytic function of s” in a neighborhood of I'; . which vanishes when 5" - 5. We
may therefore write

K (\_‘ o S') ()m(dx (1) - b, (",));’/7( ¢ v)
where .#(s’, ) is uniformly bounded. For later use we note that

Y(s=) F(s 1, 5)
o Y({l)(s 1 S)-l ()—m(m(/) "'/"(’))('F_-_(I) F ’(,f), ) F,'(I‘)F ()
— _1)_)("41,'21(‘,)([4.(,) F (1) — F(1)F (1)) ¢ 2msm

where we have assumed that ¢(¢) is continuous as we pass round S; except at
—1. Using Lemma 6.2 we find

Y1) F (s 8) o —(12m0) w02,

We now follow the procedure of Widom. If 27rwi is the change in ¢(r) as
we pass round S, , we introduce a new variable = by

= = exp[(l/w)(p((s)) — $(1)].

This is a conformal transformation of a neighborhood of I into a neigh-
borhood of the unit circle, which has an inverse transformation s .- 0(z).
Suppose that

mwt=n+n
where n is an integer and 4 | <2 1. Then we have that the contribution from
Kto(A2.4)is
1, = - 2ulerm®d ’ dz' (dB]d=z"y Y(O(z')) znzngiz's
2l

"

CFO ), sUOET) s (e ) - plt)).
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We note that
271 = exp[(l/w)($(H(s™) — $(1)]
and we may write
8z —st=( — zH) %7, 2)
where #(z', z) is analytic and nonzero near the unit circle. We have
Y(z7!, z) = (db]dz")|, _,. .
The result is that we may write [, as

I, = J.Jz'l dz’ H#(', 20z — z7)1 ZnZl"(p(lﬁ(@(Z'))) — p(1))

= dz’ (H(2', z) — H (27, )2 — 277 22 (p((8(z"))) — p(1))

l’1=1
' omotnf ot _ p A2.6
A [l ) ) — ). A0
Here, #(z', z) is analytic, with uniformly bounded derivative for z’ near
1z’ | =1, and
H(z, 2) = (wi) L.

The assumed smoothness of p(¢) implies that the first term in (A2.6) is the
Fourier coefficient of a function with modulus of continuity w(6) < const
(In 8)~1-4, so that [18] this term is bounded by const(In m)~1-2. The contribu-
tion from the remainder of S has a similar bound. Widom shows that the
second term may be written as R,,(z71), where

R = Y z'a,

k=m+1

L J. dz’ z"*14(2"),
[2"1=2

e = 3
with

A(z) = —Lf d=' P(‘pl’l(g(zl))) )
™ V) =1 zZ —z

Thus R,,(z) is the remainder after m terms of the function A(z), analytic in
|z > 1, with modulus of continuity < const(lnd)** on [z|=1. It
follows immediately [19] that R, is uniformly O((In m)~%), but this is not
adequate for our requirements.

To construct the approximating polynomial of degree m, P, (), we take a
linear combination of polynomials Q,(¢), k € 2, k < m, If [m/2] is the greatest
integer not greater than m/2, let k, ,..., k, be those members of 2’ satisfying

[m2] <k, <k, <-+<m
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so that, from Lemma 4.9, &, | — A, - [. Let us define A; by
A=k o k) m o~ [mf2]) P2, I

where k., 1s taken to be m1. We also sct

Thus

We set

Py Y N0
;1
From that part of K, discussed above, it follows that

Pty ptry > ARz Y Ah, other terms (A2.7)

L

7 =
where
b, zconst{ln k) b+
so that
i ;< !
: Y Ab T const(In) !

1

The first term of (A2.7) is little different trom the de la Vallée Poussin
method of summing the Fourier series for A(z'). Indeed, we may write.
using the definition of D, (f, x) given by Feinerman and Newman [20].

Y AR A - Dy(A Y, Y oowaz (A2.8)
=l P T2y
where

;< 2l

Since «; is the Fourier coefficient of a function with moduius of continuity
< const(ln 6)~1 . we have [18]

o, const(inj) !
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and the second term of (A2.8) satisfies

Hi

l Z pia;z™

J=[m /2]

< const(In m)

Theorem | of Feinerman and Newman [20] gives the same bound on the

first term of (A2.8).
The proof is completed by observing that the remaining parts of K,, may
be treated in the same way.
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